

deva.glide®

Maintenance-free, self-lubricating bearings

Engineering Services

Our bearing service

- Profit from more than 60 years of experience in self-lubricating sliding bearings.
- Make use of our extensive **material and application** expertise spanning a **very wide range of industries**.
 - Let our application engineering team assist you in the:
- selection of the bearing materials,
- design, purpose-built to your requirements,
- assembly and installation,
- calculation of estimated life time.

Benefit from the latest **material developments**, tested using **state of the art facilities**.

Ask for a simulation of your **bearing** application on our test rigs.

Let us **analyse your** bearing problem by FEM.

Expect the highest quality standards, certified to DIN ISO 9001:2000, ISO/TS 16949:2002 and DIN EN ISO 14001.

World class bearings from **DEVA®** save time and money.

Introduction

Contemporary designs represent an enormous challenge for modern-day bearing materials. Zero maintenance is often expected under severe to extreme conditions as well as under maximum loads.

The constant pressure on costs also calls for increasing uptime of machinery and equipment and uncompromising standards of operational reliability.

deva.glide® materials are suitable for applications

involving sustained high static and dynamic loads, relatively low sliding speeds and rotary, angular, axial or linear motion. They are also suitable for applications where conventional lubrication is not possible or permissible, or where other properties are required such as durability and resistance to operational and environmental influences or special conditions (e.g. impact load, abrasive stress, etc).

Material properties

deva.glide®

1

- allows maintenance-free operation due to the solid lubricant content of the sliding material.
- can accomodate high static and dynamic loads.
- has a consistently low coefficient of friction without stickslip effects.
- is resistant to dirt, corrosion, impact stress and edge loading.
- is provided with a vibration absorbing base material.
- can be used over a large temperature range.
- can be used in salt water.

- does not absorb water and guarantees maximum dimensional accuracy.
- is electrically conductive. No electrostatic charging effects occur.
- tolerates a high level of misalignment.
- can also be used in applications involving additional, conventional lubrication.

Material structure

deva.glide[®] materials consist of highly wear-resistant copper cast alloys showing sliding surfaces with evenly provided solid lubricant plugs according to the so-called "macro distribution" principle. These plugs are arranged according to the movement requirements. The high density of the bronze guarantees high stability under load coupled

with good dirt particle embedding properties into the lubricant plugs.

Under dry running conditions, **deva.glide**[®] is supplied with a 10 - 15 μ m thick running-in film which enables the solid lubricant to be transferred to the mating material at the first contact between the sliding partners.

Figure 2.1 - Micrograph of deva.glide®

In conventionally lubricated bronze materials a "separating lubricating film" can only be formed if the movement conditions and sliding speeds are suitable. Moreover, a conventional lubricant will be sqeezed out of the contact zone as the surface pressure increases. With **deva.glide**[®], the lubrication is provided by the sliding material itself. The solid lubricant is released from the bearing material by micro abrasion as soon as the sliding movement begins. This gives the sliding partners smooth surfaces with a firmly adhesive solid lubricant film. The solid lubricant remains within the contact zone even under heavy loads, resulting in a high degree of separation between the sliding surfaces and a sustained low coefficient of friction coupled with minimal wear.

Solid lubricant plug Solid lubricant film Bronze

Steel

Figure 2.2 – View of sliding process with solid lubrication

Solid lubraicant film

2.1 Solid lubricants

The **deva.glide**[®] material system relies on solid lubricants with optimal film-forming properties, adhesive power, surface affinity and corrosion resistance. **deva.glide**[®] uses two standard solid lubricants. There are also additional variations available for special applications. In particular,

dg 12	dg 16
Base	Base
graphite + additives	PTFE + additives

the high-purity natural graphite used in the system is not chemically pretreated and prevents any electrolytic and chemical activity originating in the materials due to its inert property.

3

Materials

.1 Composition and properties

deva.glio	de ®					Co	mpositio	n and pro	perti	es					
	dg	DIN	Material No. delivery form ¹⁾	Designation	ASTM	standard	Proportion	al weights		Ρ	hysica	l prop	erties	(min	.)
					Standard	Alloy No.	DIN	ASTM	Density	0.2% Strain	Tensile strength	Strain	E- modulus	Hard- ness	Application
Symbol									ρ	δ_{y}	δ _τ				
Unit							%	%	g/cm³	MPa	MPa	%	MPa	НВ	
	01	1705	2.1090.01	CuSn7ZnPb	B 584	C932 00	Cu 81 - 85 Sn 6 - 8 Zn 3 - 5 Pb 5 - 7	Cu 81 - 85 Sn 6,3 - 7.5 Zn 2 - 4 Pb 6 - 8	8.8	120	240	15	106.000	65	Standard material for the most
		1705	2.1090.03	CuSn7ZnPb	B 271	C932 00	permissible max. portions	Ni 1 Sb 0.35	8.8	130	270	13	106.000	75	international
			2.1090.04	CuSn7ZnPb	B 505	C932 00	Sb 0.3		8.8	120	270	16	106.000	70	standardized
	00	1705	2.1061.01	CuSn12Pb	not yet s	tandardized	Cu 84 - 87 Sn 11 - 13 Pb 1 - 2 permissible	Cu 85 - 88 Sn 10 - 12 Pb 1 - 1.5 Ni 0.8- 1.5	8.7	140	260	10	112.000	80	Material for high loads and/or corrosion stress attack
	02	1705	2.1061.03	CuSn12Pb	not yet s	tandardized	max. portions Ni 2.0		8.7	150	280	5	112.000	90	international
			2.1061.04	CuSn12Pb	B 505	C925 00	P 0.2		8.7	140	280	7	112.000	85	only partially standardized
			2.0975.01	CuAl10Ni	B 584	C955 00	Cumin. 75	Cu min. 78	7.6	270	600	12	122.000	140	Material for extreme loads
	03	1714	2.0975.02	CuAl10Ni	B 30	C955 00	Ni 4.0 - 6.5 Fe 3.5 - 5.5	Ni 3 - 5.5 Fe 3 - 5	7.6	300	600	14	122.000	150	and/or high corrosive
	03	1714	2.0975.03	CuAl10Ni	B 271	C955 00	permissible max. portions	Mn max. 3.5	7.6	300	700	13	122.000	160	environments
			2.0975.04	CuAl10Ni	B 505	C955 00	IVITI 3.3		7.6	300	700	13	122.000	160	standardized
			2.0598.01	CuZn25Al5	B584	C863 00	Cu 60 - 67 Al 3 - 7	Cu60 - 66 Al 5 - 7,5	8.2	450	750	8	115.000	180	Material for highest loads
	04	1700	2.0598.02	CuZn25Al5	B 30	C863 00	Fe 1.5 - 4 Mn 2.5 - 5	Fe 2 - 4 Mn 2.5 - 5	8.2	480	750	8	115.000	180	without corrosive attack,
04	1703	2.0598.03	CuZn25Al5	B 271	C863 00	Zn rest permissible max. portions Ni max. 3	Zn 22 - 28 Ni max. 1	8.2	480	750	5	115.000	190	international partially standardized to a large extend	
		1705	2.1052.01	CuSn12	not yet s	tandardized	Cu 84 - 88 Sn 11 - 13 Pb 1 Ni 2.0	Cu 85 -88 Sn 10 - 12 Pb 1 - 1.5 Ni 0.8 - 1.5	8.6	140	260	12	110.000	80	Material with good wear resis- tance, corrosion and sea water resistant
	05	1705	2.1052.03	CuSn12	not yet s	tandardized	Sb 0.2 P 0.2		8.6	150	280	8	110.000	90	international
			2.1052.04	CuSn12	not yet s	standardized			8.7	140	280	8	110.000	95	partially standardized

¹⁾ delivery form: .01 = sand casting, .02 = gravity casting, .03 = centrifugal casting, .04 = continuous casting

Table 3.1.1 - Composition and physical properties of deva.glide®

deva.glio	de ®				B	earing p	properties			
	dg	Max. permissible load ¹⁾	Max. sliding speed	Max. pŪ- value	Temperature range		Friction coefficient ²⁾	Friction coefficient ²⁾	Min. shaft hardn.	Shaft surface finish
			dry	dry	max. min.		dry	in water		optimal
Symbol		$\overline{p}_{stat/max}$	U _{max}	$\overline{p}U_{_{max}}$	T _{max}	T _{min}	f	f		R _a
Unit		MPa	m/s	MPa × ms	°C °C				HB	μm
	01	75	0.4	1.0	250	-100	0.10 - 0.12	0.08 - 0.12	180	0.2 - 0.8
	02	110	0.4	1.0	250	-100	0.10 - 0.12	0.08 - 0.12 1	180	0.2 - 0.8
	03	150	0.4	1.5	250	-100	0.10 – 0.13	0.08 - 0.12	300	0.2 - 0.8
	04	150	0.4	1.5	250	-100	0.12 – 0.15	not recommended	300	0.2 - 0.8
	05	110	0.4	1.0	250	-100	0.10 - 0.12	0.12 0.08 - 0.12		0.2 - 0.8
	¹⁾ Ur	nder optimum operating	conditions. ²⁾	The stated slidin that do not nece wear tests on re	g friction coeffic essarily reflect quest.	cients are not gu the actual appli	uaranteed properties. They have cation of our products and the	e been determined on our test eir service environment. We o	rigs using fi ffer custome	eld-proven parameters er-specific friction and

Table 3.1.2 – deva.glide[®] bearing properties

3.2 Chemical resistance

Table 3.2.1 shows the chemical resistance of the **deva.glide**[®] alloys. However, we recommend testing the actual performance of the chosen **deva.glide**[®] alloy under realistic operating conditions.

Evaluation:

- Resistant
- * Limited resistance, depending on concentration, oxygen content, temperature, etc.
- Not recommended

Chemical substance	Conc. in %	Temp. in °C	Alloy dg01	Alloy dg02	Alloy dg03	Alloy dg04	Alloy dg05
Strong acids Hydrochlorid acid Hydrofluoric acid Nitric acid Sulphuric acid Phosphoric acid	5 5 5 5 5	20 20 20 20 20 20	0 * 0 * *	0 ★ ●	0 ★ ●	0 0 0 0	0 ★ ●
Weak acids Ethanoic acid Formic acid Boric acid Citric acid	5 5 5 5	20 20 20 20	0 0 0 0	:	::	0 0 0	**
Bases Ammonia Sodium hydroxide Potassium hydroxide	10 5 5	20 20 20	0 * *	0 + +	0 + +	0 * *	0 + +
Solvents Acetone Carbon tetrachloride Ethyl alcohol Ethyl acetate Ethyl chloride		20 20 20 20 20 20	* * * *	*	***	* * * * *	**
Salts Ammonium nitrate Calcium chloride Magnesium chlorid Magnesium sulphate		20	* • •	• • •	+ 0 + +	* • •	• • * *
Sodium chloride Sodium nitrate Zinc chloride Zinc sulphate Gases			+ 0 *	+ 0 +	****	+ + 0 *	+ • •
Ammonia gas Chlorine gas Carbon dioxide Fluorine Sulphur dioxide Hydrogen sulphide			* • • *	* • •	* • •	* 0 * 0 0 *	* • •
Nitrogen Hydrogen Lubricants and fuel Paraffin Petroleum		20 20	* * •	:	*	0 0 + +	: :
Fuel oil Diesel fuel Mineral oil HFA - ISO46 oil-water emulsion HFC - Water/ethylene HFD Phosphate ester		20 20 70 70 70 70 70	*		*	*	*
Miscellaneous Water Sea water Resin Hydrocarbons		20 20	+ + +	:	ŧ	* 0 *	ŧ

Table 3.2.1 - Chemical properties of deva.glide®

Materials

3.3 p
U diagramm

Figure 3.3.1 – load (\bar{p}), speed (U) and specific wear (ΔS_h) diagram for deva.glide[®]

Specific wear ΔS_h for continuous operation

The specific wear is an absolute measure of wear within the main load zone [μ m] which occurs in the bearing material due to micro abrasion. It is measured in relation to the friction path (friction kilometres = Rkm). The Δ S_h values indicated in the diagram show the tendential

development of the specific wear at average $\overline{p}U$ values. The friction path is the sliding distance between the sliding partners towards each other during the relative movement.

8

Mating materials

In order to ensure a sustainable low coefficient of friction with minimal wear, it is necessary to maintain appropiate mating surface properties, for example surface hardness and roughness. Table 4.1 shows the recommended hardness values and surface finish for optimal use of the **deva.glide**[®] materials.

4

Deva Code	DIN	Minimum hardness of mating material	Average roughness R _a (produced by grinding)
dg01	2.1090	180 HB	0.2 to 0.8 <i>µ</i> m
dg02	2.1061	180 HB	0.2 to 0.8 <i>µ</i> m
dg03	2.0975	300 HB	0.2 to 0.8 <i>µ</i> m
dg04	2.0598	300 HB	0.2 to 0.8 μm
dg05	2.1052	180 HB	0.2 to 0.8 μm

Table 4.1 - Hardness values and surface finish for mating materials of deva.glide®

In order to obtain a suitable surface finish it is also possible to use shaft sleeves of a suitable hardness. With restrictions hard-facing or galvanic protective layers (normally coated, hard-chromium-plated or nickelplated) are thinkable.

The required corrosion protection of the mating material is determined by actual operating conditions. The adjacent table provides an overview of some of the possible mating materials.

Mating mat	Mating materials for normal applications ¹⁾												
Material number	DIN designation	Comparable standards											
		USA AISI	GB B.S. 9 70	F AFNOR									
1.0543	St 60-2	Grade 65	55C	A60-2									
1.0503	C45	1045	080M46	CC45									
1.7225	42CrMo4	4140	708M40	42CD4									

Mating mat	Mating materials for corrosive environments ¹⁾													
Material number	DIN designation	Comparable standards												
		USA AISI	GB B.S. 9 70	F AFNOR										
1.4021	X 20Cr13	420	420S37	Z20C13										
1.4057	X 22CrNi17	431	432S29	Z15CN16.02										
1.4112	X 90CrMoV18	440B		(Z70CV17)										
1.4122	X 35CrMo17													

Mating materials for use in sea water ¹⁾												
Material number	DIN designation	Comparable standards										
		USA AISI	GB B.S. 9 70	F AFNOR								
1.4460	X 8CrNiMo275329											
1.4462	X2CrNiMoN22-5-3	UNS531803	318513	Z3CND24-08								
2.4856	Inconel 625											

¹⁾ Materials in the table are not suitable for use with dg03 and dg04 without surface treatment due to their hardness < 300 HB.</p>

Table 4.2 - Recommended mating materials

5 Fits

Fits and tolerances for reliable operation

For sliding bearings with an outer diameter D_1 greater than 300 mm the fits must be determined according to the actual requirements. For this purpose please

contact our technical department. The subsequent proposals are valid for sliding bearings with a diameter D_1 smaller than 300 mm.

Description	Tolerance
Housing bore	H7
Outer diameter of bearing	r6 / s6
under normal operating conditions (t $\approx 80^{\circ}$ C)	
Bearing bore prior to installation into housing	E8
Bearing bore after installation into housing (approx. within) The press-fit leads to a contraction of the bearing bore from E8 to approx. H10	H10
Tolerance of bearing length	average
Surface finish standard of housing bore	(ISO:N8) R_a to 3.2 μ m
Sureface finish standard of shaft, ground	R_a 0.2 to 0.8 μ m
Tolerance of shaft:	c8 / d8
under normal operating conditions (t $< 80^{\circ}$ C)	
Table 5.1 – Reliable fits and tolerances for deva.glide®	

Fits

deva.glide[®] bearings are installed into the housing with interference or supercooling. The housing bore should have a H7 tolerance with an average roughness of $R_a = 3.2 \ \mu m$. To facilitate bearing installation, the housing bore should be provided with a lead in chamfer of 1 mm x 15° to 20°.

Depending on the application, customised fits and tolerances are possible. Please contact our technical department.

6 Design

In order to ensure proper operation of the sliding bearing and to prevent the counter surface from damaging the sliding surface, the mating surface should be free of flats and grooves and should always extend beyond the bearing surface.

deva.glide[®] bearings can tolerate misalignment to a certain extent. Nevertheless the shaft and housing should be correctly aligned for optimum running conditions. In cases of lateral thrust due to axial forces, the **deva.glide**[®]

flanged bearing is likely to be the most economic solution for small dimensions. With larger diameters, on the other hand, the combined use of a **deva.glide**[®] bearing with an additional **deva.glide**[®] thrust washer can provide an economic alternative.

6.1 Bearing design

Fig. 6.1.1 – deva.glide[®] plain bearing

Fig. 6.1.2 - deva.glide® flanged bearing

Fig. 6.1.3 - deva.glide® half-shells

Fig. 6.1.4 - deva.glide® thrust washer

Fig. 6.1.5 – deva.glide[®] axial and radial bearing segments

Fig. 6.1.6 - deva.glide® sliding plate

The illustrated **deva.glide**[®] sliding bearings are shown without a running-in film.

Fig. 6.1.7 – deva.glide $\ensuremath{^{\circledast}}$ spherical bearing, floating

Fig. 6.1.8 – deva.glide[®] spherical bearing, fixed

Installation

Mounting of deva.glide[®] bearings by press-fitting

Figure 7.1 - Press-fitting of deva.glide® radial bearings

Mounting of deva.glide® sliding strips Countersunk screws Mechanical location Image: transformed strip Image: transformed strip Image: transformed strip Image: transformed strip

Figure 7.3 - Fastening of deva.glide® sliding strips

Sealing

The structure of the **deva.glide**[®] bearings enables dirt particles to become embedded in the relatively soft solid lubricant plug thus reducing damage to the bearing and shaft. This embedding process allows the bearing to be used without performance restrictions. However, if the ingress of highly abrasive partlicles cannot be avoided it is advisable to seal the bearing area.

Mounting of deva.glide[®] bearings by supercooling

deva.glide[®] bearings may also be supercooled to faciliate assembly. The shrinkage (s) is calculated using the following equation:

$$s = 0.8 \times \alpha_1 \times \Delta T \times D_2$$
 (mm)

where:

 $\alpha_{\rm r}$ = linear coefficient of thermal expansion (1/10⁶K)

- ΔT = temperature difference (°C)
- $D_{2} = outer diameter (mm)$

If using dry ice (CO_2) , we recommend using a wodden box fully lined with polystyrene as a cooling container. An insulating lid ensures quicker cooling of the bearings. Always wear protective goggles and gloves when handling dry ice or liquid nitrogen, as well as the cooled parts. In order to ensure uniform supercooling, the dry ice should be crushed into walnut size. It takes between 0.5 and 2 hours for complete cooling of the bearings. The supercooled parts can then be inserted without effort into the housing bore.

Federal-Mogul Deva recommends supercooling with liquid Nitrogen for bearings $D_1 < 200$ mm and dry ice for $D_1 > 200$ mm.

Figure 7.2 - Supercooling installation

Mounting of deva.glide® thrust washers

Thrust washers should be fixed on the outer diameter e.g. in a recess of the housing. The inner diameter of the thrust washer must exceed the shaft diameter in order to avoid wear and chip removal. Thrust washers can also be fixed with locking pins if there is no suitable recess in the housing.

Note:

- The locking pins should be recessed below the bearing surface with sufficient allowance for wear.
- Screws should be countersunk below the bearing surface also observing sufficient allowance for wear.
- Ensure that the inside diameter of the washer does not touch the shaft after assembly.

Figure 7.4 - Fastening of deva.glide® thrust washers

8

Recommended dimensions

Plain bearing, radial				al	Flanged bearing					Thrust washer			Spherical bearing					
	Fig. 8	3.1, pag	ge 14			Fig. 8	3.2, pag	ge 14		Fig. 8	3.3, pag	ge 14	I	-ig. 8.4	and Fig	g. 8.5, p	bage 15	5
D ₁	D ₂		Β,		D ₁	D ₂	D ₃	S _₽	B ₁	D ₅	D	S _T	D,		D _к	D ₂	B,	B _F
	~	1.0 x d min.	0.75 x d min.	1.25 x d max.									Floating	Fixed bearing				
50	60	50	35	65	50	60	80	5.0			80	5.0		Ū				
55 60	65 75	55 60	40 45	70 75	55 60	65 75	85 00	5.0 7.5			85 00	5.0						
65	80	65	45	80	65	85	95	7.5			95	7.5						
70	85	70	50	85	70	85	100	7.5			100	7.5						
75	90	75	55	90	75	90	105	7.5			105	7.5						
80 85	95 100	80 85	60 60	100	80 85	95 100	110 115	7.5 7.5			110 115	7.5						
90	105	90	65	115	90	105	120	7.5			120	7.5						
95	115	95	70	120	95	115	125	10.0			125	10.0						
100	120	100	75	125	100	120	140	10.0			140	10.0	100	100	130	150	70	55
120	140	120	80 90	140	120	140	160	10.0			160	10.0	110	120	160	180	70 85	55 70
140	160	140	100	175	140	160	180	10.0			180	10.0	120	140	180	210	90	70
150	170	150	110	185	150	170	190	10.0			190	10.0						
180	205	180	125	225	180	205	220	10.5		195	220	105	140	160	200	230	105	80 80
200	205	200	150	250	200	205	250	12.5		205	250	12.5	180	200	250	200	130	100
													200	220	275	320	135	100
225	250	225	170	280	225	250	275	12.5		230	275	12.5						100
250	278	250	190	315	250	278	300	14.0		255	300	14.0	220	240	300	340	140	100
200	210	200	100	010	200	210	000	14.0		200	000	14.0	240	260	325	370	150	110
280	310	280	210	350	280	310	340	15.0		285	340	15.0	260	280	350	400	155	120
300	332	300	225	375	300	332	360	16.0	est.	305	360	16.0	280	300	375	430	165	120
									anbe				300	320	400	440	160	135
350	385	350	260	435	350	385	420	17.5	u L	355	420	17.5						
									0				340	360	420	480	160	135
400	440	400	300	500	400	440	480	20.0		405	480	20.0	360	380	450	520 540	190	160 160
400	0	400	000	500	400	0	-00	20.0		400	400	20.0	400	420	490	560	190	160
													420	440	520	600	218	185
450	495	450	340	580	450	495	530	22.5		455	530	22.5	440	400	E 40	000	010	105
													440	460	540 565	650	218	185
500	550	500	375	625	500	550	600	25.0		510	600	25.0	480	500	585	670	230	195
													500	530	620	710	243	205
550	605	550	415	690	550	605	650	25.0		560	650	25.0	520	560	655	750	258	015
600	660	600	450	750 ¹⁾	600	660	720	25.0		610	720	25.0	560	600	700	800	230	215
								2010			0		600	630	740	850	300	260
650	715	650	490	815 ¹⁾	650	715	780	25.0		660	780	25.0						
700	770	700	525	9751)	700	770	840	25.0		710	840	25.0	630	670	785	900	308	260
100	110	700	525	075%	700	110	040	25.0		/10	040	25.0	670	710	830	950	325	275
750	825	750 ¹⁾	560	940 ¹⁾	750	825	900	25.0		760	900	25.0	710	750	875	1000	335	280
800	880	800 ¹⁾	600	1000 ¹⁾	800	880	960	25.0		810	960	25.0	750	800	930	1030	355	300
850 900	935 990	900 ¹⁾	640 675	1060 ¹⁾	850 900	935 990	1020	25.0 25.0		860 910	1020	25.0	800	850 900	985	1120	365 375	310
950	1045	950 ¹⁾	710 ¹⁾	1200 ¹⁾	950	1045	1140	25.0		960	1140	25.0	900	950	1100	1250	400	340
1000	1100	10001)	750 ¹⁾	1250 ¹⁾	1000	1100	1200	25.0		1010	1200	25.0	950	1000	1160	1320	438	370
1200	1320	12001)	9001)	1500 ¹⁾	1200	1320	1440	25.0		1210	1440	25.0						

 $^{\mbox{\tiny 1)}}$ Length of bearing subdivided (2 x 0.5) for production reasons.

Further sizes available on request.

Table 8.1 - Size table for deva.glide® (all dimensions in mm)

Plain bearing, radial - shape code 2KB155

Standard version $OD_1 \leq 500 \text{ mm}$

The direction of movement determines the arrangement of the lubrication plugs.

All **deva.glide**[®] bearings can be provided with a running-in film (not shown in order to give a clearer view).

Note:

In the standard version $\emptyset D_1 > 500 \text{ mm}$ and special versions, solid lubricant pugs are introduced into blind holes if required.

Figure 8.1 - Plain bearing, radial

B₁

ت ات

Figure 8.2 - Flanged bearing

Figure 8.3 - Thrust washer / axial bearings

ecommended dimensions

deva.glide® maintenance-free

Spherical bearing - shape code 2PP030

Figure 8.4 - Spherical bearing, floating

Figure 8.6 - Sliding plates

Recommended dimensions

Order specifications deva.glide®

Order designation (example):	2KB155	01.	12.	22	(61)	D ₁ =200;	D ₂ =225;	B ₁ =200
Shape codel)								
(see figure 8.1 to 8.6, page 14 and 15)								
Base material 01 to 05 (see table 3.1.1 and 3.1.2, page 6)								
Solid lubricant plugs 12 = base graphite 16 = base PTFE								
Running-in film 22 = base graphite 26 = base PTFE								
Adhesive bonding agent 61 = -100 °C to +100 °C 62 = -100 °C to +250 °C								
Dimensions ¹⁾ (see table 8.1, page13)								
¹⁾ Further sizes and forms available on request.								

10 Data relevant to the design of DEVA[®] bearings

Description of applica	tion:							
Project / No					[New desig	n 🗌 Exis	ting design
Plain bearing	B₁ C Flanged	SF SF SF SF SF		asher	Spherical	bearing Fixed bearing		L ing plate
Shaft rotates		Bearing	rotates		Angular motion	ı	Axial mot	ion
	Item 1	Item 2	Item 3	Мо	tion	Item 1	Item 2	Item 3
Quantity				Spe	ed in rpm			
Dimensions (in mm) Inner diameter $D_1(D_5)$ Outer diameter $D_2(D_6)$	Item 1	Item 2	Item 3	Slic Stro Dou	ing speed in m/s ke length in mm uble strokes/min			
Bearing width B ₁				Fre	$g_{\mu} = \sqrt{\alpha^{\alpha}}$			
Outer ring width B _F								
Flange outer dia. D ₃				Ор	erating time	Item 1	Item 2	Item 3
Flange thickness S _F				Cor	ntinuous operation			
Wall thickness S _T				Inte	rmittent operation	9/ /h	0/ /b	0/ /h
Plate length L				Dut		%/N	%/N	%/П
Plate thickness S				Fric	tional distance in km			
s s	lions d	ltom 0	ltom 0	1 14		lions d	ltom 0	ltom 0
Loading		item 2	item 3	Fits	and tolerances	Item 1	Item 2	Item 3
Dynamic				Bog	ui uring holder			
Alternating				Dec				
Impact				En	vironm. conditions	Item 1	Item 2	Item 3
Radial load in kN				Ten	perature at bearing	°C	°C	°C
Axial load in kN				Cor	ntact medium			
Surface pressure								
Radial in MPa				Otr	er innuences			
Axial in MPa								
Mating material	Item 1	Item 2	Item 3	Life	etime	Item 1	Item 2	Item 3
Material No./type				Des	sired operating time	h	h	h
Hardness in HB/HRC				Per	missible wear	mm	mm	mm
Roughness R_a in μ m				Cor	mpany address / cor	ntact		
Lubrication	Item 1	Item 2	Item 3					
Dry running								
Permanent lubrication								
Medium lubrication								
Medium								
Lubricant								
Assembly lubrication								
Dynamic viscosity								
- Jildinio viocosity			1					

Design data

deva.glide®

The present technical documentation has been prepared with care and all the information verified for its correctness. No liability, however, can be accepted for any incorrect or incomplete information. The data given in the documentation are intended as an aid for assessing the suitability of the material. They are derived from our own research as well as generally accessible publications.

The sliding friction and wear values stated by us or appearing in catalogues and other technical documentation do not constitute a guarantee of the specified properties. They have been determined in our test facilities under conditions that do not necessarily reflect the actual application of our products and their service environment or permit comprehensive simulation in relation to them. We provide guarantees only after written agreement of the test procedures and parameters and of all the relevant characteristics which the product is required to have.

All transactions conducted by DEVA[®] are subject, in principle, to our terms of sale and delivery as indicated in our offers, product brochures and price lists. Copies are available on request. Our products are subject to a constant process of development. DEVA[®] reserves the right to amend the specification or improve the technological data without prior notice.

DEVA®, deva.bm®, deva.bm®/9P, deva.metal®, deva.glide®, deva.tex® and deva.eco® are registered trade marks of Federal-Mogul Deva GmbH, D-35260 Stadtallendorf, Germany.

Further infomation about our products:

DEVA[®] Product range

Technical Manual deva.metal®

Technical Manual deva.bm®

Technical Manual deva.tex®

Technical Manual deva.eco®

New perspective on bearings with DEVA®

DEVA®-

in the

Materials

steel industry

DEVA®-

Materials

industry

in the hydro

DEVA[®]-Materials in the tire industry

DEVA®-Materials in rail systems

Federal-Mogul Deva GmbH

Postfach 1160 · D-35251 Stadtallendorf · Schulstrasse 20 · D-35260 Stadtallendorf Phone +49 (0)6428 701-0 · Telefax +49 (0)6428 701-108 info@deva.de · www.deva.de