ENGINEERING INFORMATION

TABLE OF CONTENTS

ENGINEERING INFORMATION SHAFT AND HOUSING FITS LUBRICATION LIFE AND LOAD RATINGS RADIAL CLEARANCE CHART To select the proper fits, it is necessary to consider the type and extent of the load, bearing type, and certain other design and performance requirements.

The required shaft and housing fits are indicated in Tables 1 and 3. The terms "Light", "Normal" and "Heavy" loads refer to radial loads that are generally within the following limits (C being the Basic Dynamic Load Rating computed in accordance with ABMA-ANSI Standards).

Radial <u>Load</u>	Ball <u>Bearings</u>	Roller <u>Bearings</u>				
Light	up to 0.07C	up to 0.08C				
Normal	from 0.07C	from 0.08C				
	to 0.15C	to 0.18C				
Heavy	over 0.15C	over 0.18C				

Shaft Fits. Table 1 indicates the initial approach to shaft fit selection. Note that for most normal applications where the shaft rotates and the radial load direction is constant, an interference fit should be used. Also, the heavier the load, the greater is the required interference.

For stationary shaft conditions and constant radial load direction, the inner ring may be moderately loose on the shaft.

Note that for pure thrust (axial) loading, heavy interference fits are not necessary as a moderately loose to tight shaft fit only is needed.

Table 2 shows how the tolerance ranges of the various classifications deviate from the basic bore diameters.

Housing Fits. Table 3 indicates the initial approach to housing fit selection. Note that the use of clearance or interference fits is mainly dependent upon which bearing ring rotates in relation to the radial load. For indeterminate or varying load directions, avoid clearance fits. Clearance fits are preferred in axially split housings to avoid distorting bearing outer rings. The extent of the radial load also influences the choice of fit.

Table 4 shows how the tolerance ranges of the various classifications deviate from the basic outside diameters.

TABLE 1 – SELECTION OF SHAFT TOLERANCE CLASSIFICATIONS For Metric Radial Ball and Roller Bearings of Tolerance Classes ABEC-1, RBEC-1

DES	SIGN & OPERAT CONDITIONS	TING	BALL BEARINGS				CYLINDRICAL ROLLER BEARINGS				SPHERICAL ROLLER BEARINGS						
Detetlenel	Inner Ring	Dealist		d			Tolerance			Tolerance				Tolerance inch Classifi-			
Rotational Conditions	Axial Displaceability	Radial Loading		mm Over Incl.		ch Incl.	Classifi- cation ¹	Over	Incl.	Over	Incl.	Classifi- cation ¹	mr Over	n Incl.	Over	Incl.	cation ¹
Conditions	Displaceability	Lodding	OVCI	IIIGI.	Over	mor.	Cation	0	40	0	1.57	j6 ²	0	40	0	1.57	j6 ²
			0	18	0	0.71	h5	40	140	1.57	5.51	k6 ²	40	100	1.57	3.94	k6 ²
		Light	18	All	0.71	All	j6 ²	140	320	5.51	12.6	m6 ²	100	320	3.94	12.6	m6 ²
		5						320	500	12.6	19.7	n6	320	500	12.6	19.7	n6
Inner Ring								500	All	19.7	All	p6	500	All	19.7	All	р6
Rotating								0	40	0	1.57	k5	0	40	0	1.57	k5
in relation								40	100	1.57	3.94	m5	40	65	1.57	2.56	m5
to load		Normal	0	18	0	0.71	j5	100	140	3.94	5.51	m6	65	100	2.56	3.94	m6
direction			18	All	0.71	All	k5	140	320	5.51	12.6	n6	100	140	3.94	5.51	n6
								320	500	12.6	19.7	p6	140	280	5.51	11.0	p6
or								500	All	19.7	All	r6	280	500	11.0	19.7	r6
													500	All	19.7	All	r7
<u>Load</u>								0	40	0	1.57	m5	0	40	0	1.57	m5
Direction			18	100	0.71	3.94	k5	40	65	1.57	2.56	m6	40	65	1.57	2.56	m6
indeter-		Heavy	100	All	3.94	All	m5	65	140	2.56	5.51	n6	65	100	2.56	3.94	n6
minate								140	200	5.51	7.87	р6	100	140	3.94	5.51	р6
								200 500	500 All	7.87 19.7	19.7 All	r6 r7	140 200	200 All	5.51 7.87	7.87 All	r6 r7
								500	All	19.7	All	17	200	All	1.01	All	17
	Inner Ring must	Light	_							~							
Inner Ring	be easily axially	Normal	_	All S	Sizes		g6		All	Sizes		g6		AI	Sizes		g6
<u>Stationar y</u>	displaceable	Heavy															
in relation	Inner Ring need	Light	L														
to load	not be easily ax-	Normal		All S	Sizes		h6		All	Sizes		h6		Al	l Sizes		h6
direction	ially displaceable	Heavy															
Pu	re Thrust (Axial)	Load		All S	Sizes		j6				Cons	ult Bearing	g Manuf	facturer			

¹ Tolerance classifications shown are for solid steel shafts. Numerical values are listed

in Table 2.

For hollow or non-ferrous shafts, tighter fits may be needed.

² If greater accuracy is needed, substitute j5, k5 and m5 for j6, k6 and m6 respectively.

© Copyright, American Bearing Manufacturers Association, 1995.

44 High Street, West Nyack, NY 10994 Tel (845) 358-6000 **E** Fax (845) 358-7415 www.generalbearing.com

TABLE 2 – SHAFT DIAMETER TOLERANCE LIMITS For Metric Radial Ball and Roller Bearings of Tolerance Classes ABEC-1, RBEC-1

Dimensions and deviations in inches and millimeters **Tolerance Limits in Inches**

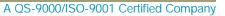
																	n 2 - 2000,	
		d					TOLERANCE CLASSIFICATIONS											
	inch			mm		g6	h6	h5	j5	j6	k5	k6	m5	m6	n6	p6	r6	
Over	Incl.	Dev.	Over	Incl.	Dev.													
0.1181		0	3		0	0002	0	0	+.0001	+.0002	+.0002		+.0004					
	0.2362	0003		6	008	0005	0003	0002	0001	0001	0		+.0002					
0.2362		0	6		0	0002	0	0	+.0002	+.0003	+.0003		+.0005					
	0.3937	0003		10	008	0006	0004	0002	0001	0001	0		+.0002					
0.3937		0	10		0	0002	0	0	+.0002	+.0003	+.0004		+.0006					
	0.7087	0003		18	008	0007	0004	0003	0001	0001	0		+.0003					
0.7087		0	18		0	0003	0		+.0002	+.0004	+.0004		+.0007					
	1.1811	0004		30	010	0008	0005		0002	0002	+.0001		+.0003					
1.1811		0	30		0	0004	0		+.0002	+.0004	+.0005	+.0007	+.0008	+.0010				
	1.9685	0045		50	014	0010	0006		0002	0002	+.0001	+.0001	+.0004	+.0004				
1.9685		0	50		0	0004	0		+.0002	+.0005	+.0006	+.0008	+.0009	+.0012	+.0015			
	3.1496	0006		80	015	0011	0007		0003	0003	+.0001	+.0001	+.0004	+.0004	+.0008			
3.1496		0	80		0	0005	0		+.0002	+.0005	+.0007	+.0010	+.0011	+.0014	+.0018	+.0023		
	4.7244	0008		120	020	0013	0009		0004	0004	+.0001	+.0001	+.0005	+.0005	+.0009	+.0015		
4.7244		0	120		0	0006	0		+.0003	+.0006	+.0008	+.0011	+.0013	+.0016	+.0020	+.0027	+.0035	
	7.0866	0010		180	025	0015	0010		0004	0004	+.0001	+.0001	+.0006	+.0006	+.0011	+.0017	+.0026	

© Copyright, American Bearing Manufacturers Association, 1995.

TABLE 3 – SELECTION OF HOUSING TOLERANCE CLASSIFICATIONS For Metric Radial Ball and Roller Bearings of Tolerance Classes ABEC-1, RBEC-1

	DESIGN AND OPER	ATING CONDITIONS		
Rotational Conditions	Loading	Other Conditions	Outer Ring Axial Displaceability	TOLERANCE CLASSIFI- CATION'
	Licht	Heat input through shaft		G7 ³
<u>Outer Ring</u> <u>Stationar y</u>	Light Normal or Heavy	Housing split axially	Outer Ring easily axially displaceable	H7²
in relation to load direction	licery	Housing not		H6 ²
	Shock with temporary complete unloading	split axially	Transitional	J6 ²
Load Direction	Light Normal or Heavy		Range⁴	K6 ²
indeterminate	Heavy Shock	Split not		
Outer Ring	Light	recommended		M6 ²
Rotating	Normal or Heavy		Outer Ring not	N6 ²
in relation to load direction	Heavy	Thin wall housing not split	easily axially displaceable	P6 ²

For cast iron steel housings, numerical values are listed in Table 4. For housings of non-ferrous alloys tighter fits may be needed. Where wider tolerances are permissible, use tolerance classifications H8, H7, J7, K7, M7, N7 and P7 in place of


H7, H6, N6, K6, M6, N6 and P6 respectively. For large bearings and temperature differences between outer ring and housings greater than 10°C, F7 may be

used instead of G7.

⁴ The tolerance zones are such that outer ring may be either tight or loose in the housing.

© Copyright, American Bearing Manufacturers Associations, 1995.

TABLE 4 – HOUSING BORE TOLERANCE LIMITS For Metric Radial Ball and Roller Bearings of Tolerance Classes ABEC-1, RBEC-1

		b									TOLE	RANCE CLA	SSIFICATI	ONS						
	inch			mm		F7	G7	H8	H7	H6	J6	J7	K6	K7	M6	M7	N6	N7	P6	P7
Over	Incl.	Dev.	Over	Incl.	Dev.															
.3937		0	10		+0	+.0006	+.0002	0	0	0	0002	0003	0004	0005	0006	0007	0008	0009	0010	0011
	.7087	0003		18	008	+.0013	+.0009	+.0011	+.0007	+.0004	+.0002	+.0004	+.0001	+.0002	0002	0	0004	0002	0006	0004
.7087		0	18		+0	+.0008	+.0003	0	0	0	0002	0004	0004	0006	0007	0008	0009	0011	0012	0014
	1.1811	0035		30	009	+.0016	+.0011	+.0013	+.0008	+.0005	+.0003	+.0005	+.0001	+.0002	0002	0	0004	0003	0007	0006
1.1811		0	30		+0	+.0010	+.0004	0	0	0	0002	0004	0005	0007	0008	0010	0011	0013	0015	0017
	1.9685	0045		50	011	+.0020	+.0013	+.0015	+.0010	+.0006	+.0004	+.0006	+.0001	+.0003	0002	0	0005	0003	0008	0007
1.9685		0	50		+0	+.0012	+.0004	0	0	0	0002	0005	0006	0008	0009	0012	0013	0015	0018	0020
	3.1496	0005		80	013	+.0024	+.0016	+.0018	+.0012	+.0007	+.0005	+.0007	+.0002	+.0004	0002	0	0006	0004	0010	0008
3.1496		0	80		+0	+.0014	+.0005	0	0	0	0002	0005	0007	0010	0011	0014	0015	0018	0020	0023
	4.7244	0006		120	015	+.0028	+.0019	+.0021	+.0014	+.0009	+.0006	+.0009	+.0002	+.0004	0002	0	0006	0004	0012	0009
4.7244		0	120		+0	+.0017	+.0006	0	0	0	0003	0006	0008	0011	0013	0016	0018	0020	0024	0027
	5.9055	0007		150	018	+.0033	+.0021	+.0025	+.0016	+.0010	+.0007	+.0010	+.0002	+.0005	0003	0	0008	0005	0014	0011
5.9055		0	150		+0	+.0017	+.0006	0	0	0	0003	0006	0008	0011	0013	0016	0018	0020	0024	0027
	7.0866	0010		180	025	+.0033	+.0021	+.0025	+.0016	+.0010	+.0007	+.0010	+.0002	+.0005	0003	0	0008	0005	0014	0011
7.0866		0	180		+0	+.0020	+.0006	0	0	0	0003	0006	0009	0013	0015	0018	0020	0024	0028	0031
	9.8425	0012		250	030	+.0038	+.0024	+.0028	+.0018	+.0011	+.0009	+.0012	+.0002	+.0005	0003	0	0009	0006	0016	0013
9.8425		0	250		+0	+.0022	+.0007	0	0	0	0003	0006	0011	0014	0016	0020	0022	0026	0031	0035
	12.4016	0014		315	035	+.0043	+.0027	+.0032	+.0020	+.0013	+.0010	+.0014	+.0002	+.0006	0004	0	0010	0006	0019	0014

Example:

Bearing No. 6203 (17mm x 40mm x 12mm). Application: Electric motor (shaft and bearing inner ring rotating).

Load 20 lbs. radial

Per catalog Page 7: Basic Dynamic Load Rating (c) = 2153 lbs.

<u>Load</u> = <u>20 lbs.</u> = .009

С 2153 lbs.

Radial load is less than .07 of Dynamic Load rating (c); therefore, load is "light".

Table 1: Inner ring rotating, light radial load, 17 mm inner diameter: Tolerance classification should be h5.

Table 2: 17mm inner diameter (.6693") and h5 tolerance: Shaft diameter tolerance is +0", -.0003". Shaft diameter should be .6693" max., .6690" min.

Table 3: Outer ring stationary, light load, housing not split axially: Tolerance classification should be H6.

Table 4: 40mm outer diameter (1.5748") and H6 tolerance: Housing bore diameter tolerance is +0", +.0006". Housing bore diameter should be 1.5754" max., 1.5748" min.

© Copyright, American Bearing Manufacturers Associations, 1995.

LUBRICATION

Lubrication is essential to prevent premature ball bearing failure. Probably the most critical factor in maintaining operating conditions, the lubricant functions to:

- 1) minimize friction between balls and raceways,
- 2) act as a preventative against rust and corrosion,
- 3) dissipate heat build-up, and
- 4) provide a barrier against the entry of foreign matter.

The type of lubricant used also plays a critical factor in

operating efficiency. Conventional types fall into the classifications of oil or grease, each with specific properties correct for different bearing applications. Generally, grease is the preferred choice due to its ease of application and maintenance, performing well in the 0°F to 300°F operating range. Oil, however, does function better in extreme temperature conditions, below -40°F or above 350°F.

The following chart recommends the ten key lubricants used by General Bearing Corporation.

CHARACTERISTICS OF GREASE LUBRICANTS USED IN GENERAL BEARING PRODUCTS

COMPANY TRADEMARK	MIL SPEC	BASE OIL	THICKENER	OPERATING RANGE	CHARACTERISTICS
Chevron SRI #2	MIL-G-3545G	Mineral	Polyurea	-20° to 350°F	Rust inhibitive petroleum oil with a worked penetra- tion of 265. Water resistant properties.
Dow Corning DC41		Silicon		-0° to 550°F	Worked penetration of 280. Excellent for high tempera- ture requirements.
DuPont Krytox 240AC	MIL-G-27617A	Fluorocarbon	Uidax	-30° to 550°F	Worked penetration of 295. Excellent for both high and low temperature applications.
Exxon Beacon 325	MIL-G-3278	Diester	Lithium	-65° to 250°F	Excellent for low temperature applications.
Exxon Andok C		Mineral	Sodium	-20° to 250°F	Worked penetration of 205. General purpose. Good channeling grease.
Mobil 28	MIL-G-81322D	Synthetic Hydrocarbon	Clay Bentonite	-65° to 350°F	Excellent for high and low temperature applications.
Shell Alvania 2	MIL-G-18709	Mineral	Lithium	-20° to 250°F	Worked penetration of 287. General purpose lubrication.
Shell Aeroshell 7	MIL-G-23827B	Diester	Microgel	-100° to 300°F	Worked penetration of 288. Excellent for low temperature lubrication qualities.
Shell Dolium R #2		Mineral	Polyurea	-30° to 300°F	Worked penetration of 285. Low noise level, high thermal stability. Water resistant properties.
Kyodo Yushi Multemp SRL		Synthetic Hydrocarbon	Lithium	–40° to 300°F	Long performance life. Excellent for high and low temperature applications.

A QS-9000/ISO-9001 Certified Company

BEARING LIFE AND LOAD RATINGS

How long a ball bearing will last under load depends on two groups of variables. First, there are the bearing's physical characteristics, which include how it is designed, the material from which it is made, and how it is manufactured. Secondly, there are the conditions under which it is applied, such as load, operating speed and temperature, the way it is mounted, and the way it is lubricated.

Even if a ball bearing is operated under ideal conditions — where it has been properly mounted, lubricated, protected from foreign particles, and not subjected to extreme temperature or speed — it will ultimately fail due to either material fatigue or wear. Fatigue failure results from the repeated stresses that are developed in the contact areas between the balls and raceways. Failure shows up as spalling of the load-carrying surfaces. Excessive wear occurs when operating conditions are other than ideal. These conditions are generally those which cause high friction and/or heat within the bearing.

PREDICTING BEARING LIFE

It is not possible to predict the exact fatigue life of an individual bearing. Instead, the designer of a system incorporating ball bearings must rely on the results of extensive research and testing done on the life of groups of identical bearings operated under identical conditions. Tests show that lifetimes of such operated bearings vary due to intricate differences between individual bearings. These lifetimes, however, follow definite statistical distributions. Load ratings, boundary dimensions, and tolerances for ball bearings and cylindrical roller bearings are computed from ABMA and ISO standards.

Such statistical distributions can be represented by equations which relate predicted bearing life to factors like the load it must bear, its operating speed, and the bearing's physical characteristics. It is up to the designer to then determine which bearing is best for a particular application by use of these equations.

 L_{10} , or rating life, is the life most commonly used in load calculations. It is the life in units of either hours or millions of revolutions that 90% of a group of apparently identical ball bearings will complete or exceed. Another accepted form is L_{50} , or *median life*. It is the life which 50% of a group of bearings will complete or exceed. L_{50} is usually not more than five times L_{10} .

Another important definition is that of the *basic dynamic load rating* "C". For a radial ball bearing, the basic dynamic load rating is the constant radial load which a group of identical bearings with a stationary outer ring can theoretically endure for 500 hours at 33-1/3 RPM (1,000,000 revolutions).

The relationship between bearing life and applied load can be expressed as:

Life in Revolutions:

$$L_{10} = \left(\frac{C}{P} \right)^3 \times 10^6$$

Life in Hours:

$$L_{10} = \left(\begin{array}{c} \frac{C}{P} \end{array}\right)^3 \quad \frac{16667}{N}$$

Where:

 L_{10} = The rating life

- C = The basic dynamic capacity as shown in the catalog
- P = The equivalent radial load on the bearing in pounds
- N = Speed in RPM

Consult the factory for other life factors.

EQUIVALENT RADIAL LOAD

Bearings often must carry a combination of radial and thrust loads. The equations stated in the previous section are based solely on radially loaded bearings. Therefore, when radial and axial loads are present, an *equivalent radial load* (P) must be calculated. The equivalent radial load is the greater of:

$$P = XF_r + YF_a$$
$$P = F_r$$

Where:

- P = Equivalent radial load in pounds
- F_r = Applied radial load in pounds
- F_a = Applied axial load in pounds
- X = Radial load factor = 0.56
- Y = Axial load factor dependent on the magnitude of F_a/C_o
- C_o = Catalog static load rating in pounds (definition to follow:

F _a /C _o	Y
0.014	2.30
0.028	1.99
0.056	1.71
0.084	1.55
0.11	1.45
0.17	1.31
0.28	1.15
0.42	1.04
0.56	1.00

GENERAL BEARING CORPORATION A QS-9000/ISO-9001 Certified Company

STATIC LOAD RATING

Co, the static load rating is the non-rotating radial load which produces a maximum contact stress of 667,000 pounds per square inch at any point within the bearing.

When static load exceeds the catalog rating, a significant decrease in bearing smoothness and life can be expected when rotation is resumed.

As with dynamic load ratings, static loads are usually a combination of radial and thrust loads. Equivalent static load must therefore be calculated.

The static equivalent load for radial ball bearings is the greater of:

$$P_o = .6 F_r + .5 F$$

$$P_o = F_r$$

Where:

P_o = Equivalent static radial load in pounds

 F_r = Applied radial load in pounds

а

F_a = Applied axial load in pounds

EXAMPLES OF LIFE AND LOAD CALCULATIONS

Example 1:

Determine the L₁₀ life hours of a 6203 ball bearing operating at 800 RPM with a radial load of 250 lbs.

The Basic Dynamic capacity from the catalog is C = 2153 lbs.

 $L_{10} = Unknown$

C = 2153 lbs.

 $F_r = P = 250 \text{ lbs.}$

$$L_{10} = \left(\begin{array}{c} \frac{C}{P} \end{array}\right)^3 \left(\frac{16667}{N}\right)$$
$$L_{10} = \left(\begin{array}{c} \frac{2153}{250} \end{array}\right)^3 \qquad \left(\frac{16667}{800}\right)$$

 $L_{10} = 13307$ hours

44 High Street, West Nyack, NY 10994 Tel (845) 358-6000 Fax (845) 358-7415 www.generalbearing.com

Example 2:

Determine the minimum static and dynamic load ratings required to carry a 300 pound radial load, and 75 pound axial load for 3500 hours at 650 RPM.

С	=	Unknown
$\rm C_o$	=	Unknown
Ρ	=	Unknown
P_{o}	=	Unknown
Y	=	Unknown
Х	=	.56
Fr	=	300 lbs.
F_a	=	75 lbs.
Ν	=	659 RPM
L	=	3500 hrs.
Po	=	$.6 F_r + .5 F_a = 217.5 lbs.$
		or
Po	=	$F_{r} = 300 \text{ lbs.}$

Therefore $P_0 = Co minimum = 300 lbs.$

$$F_a/C_0 = 75/300 = 0.25$$

Then by interpolation Y = 1.19

Equivalent radial load

C =

P =
$$XF_r + YF_a = .56 (300) + 1.19 (75) = 257.3$$
 lbs
or

 $P = F_r = 300 \text{ lbs.}$ Therefore P = 300 lbs.

$$L_{10} = \left(\frac{C}{P}\right)^3 \left(\frac{16667}{N}\right)$$
or

$$\left(\frac{L_{10}N}{16667}\right)^{1/3} F$$

$$C = \left(\frac{(3500)(650)}{16667}\right)^{1/3} \quad 300 = 1545 \text{ lbs.}$$

Answer: C_o minimum = 300 lbs.

C minimum = 1071 lbs.

RADIAL INTERNAL CLEARANCE

Radial internal clearance is a measure of the radial looseness, or play between the inner and outer rings. Precision bearings are available in five classes of looseness. The amount of looseness necessary is dependent on many factors such as shaft alignment, shaft and housing fits, bearing speed, etc. As RPM, shaft misalignment, and press fits increase in magnitude, so should radial play.

RADIAL INTERNAL CLEARANCE, SINGLE ROW, RADIAL CONTACT, BALL BEARINGS

Tolerance Limits for Radial Internal Clearance of Single Row, Radial Contact Ball Bearings Under No Load

(Applicable to Bearings of ABEC-1, ABEC-5, ABEC-7 and ABEC-9 Tolerance Classes)

TOLERANCE LIMITS IN 0.0001 INCH

	BORE	(2-2	STA	NDARD	C·		C-	-4	C	2-5			
	1ETER				ACCEPTANCE LIMITS									
	d													
Over	nm Incl.	Low	High	Low	High	Low	High	Low	High	Low	High			
		-	· · ·	-		-		LUW	riigii	LUW	riigii			
2.5	6	0	3	1	5	3	9	—	_	—	-			
6	10	0	3	1	5	3	9	6	11	8	15			
10	18	0	3.5	1	7	4.5	10	7	13	10	18			
18	24	0	4	2	8	5	11	8	14	11	19			
24	30	0.5	4.5	2	8	5	11	9	16	12	21			
30	40	0.5	4.5	2.5	8	6	13	11	18	16	25			
40	50	0.5	4.5	2.5	9	7	14	12	20	18	29			
50	65	0.5	6	3	11	9	17	15	24	22	35			
65	80	0.5	6	4	12	10	20	18	28	26	41			
80	100	0.5	7	4.5	14	12	23	21	33	30	47			
100	120	1	8	6	16	14	26	24	38	35	55			
120	140	1	9	7	19	16	32	28	45	41	63			
140	160	1	9	7	21	18	36	32	51	47	71			
160	180	1	10	8	24	21	40	36	58	53	79			
180	200	1	12	10	28	25	46	42	64	59	91			

For additional information concerning mounting procedures, lubrication, variable speeds and loads, safety or service factors, and other technical data necessary for proper bearing selection, contact our Engineering Department.

