

DP4Maintenance-free

Designer¥s Handbook

Quality

All the products described in this handbook are manufactured under DIN ISO 9001/2 or QS 9000 approved quality management systems.

Formula Symbols and Designations

Formula Symbol	Unit	Designation				
Α	mm ²	Surface area of DP4 bearing				
A _M	mm ²	Surface area of mating surface in contact with DP4 bearing (slideway)				
a _B	-	Bearing size factor				
a _c	-	Application factor for bore burnishing or machining				
a _E	-	High load factor				
a _{E1}	-	Specific load factor (slideways)				
a _{E2}	-	Speed, temperature and material factor (slideways)				
a _{E3}	-	Relative contact area factor (slideways)				
a _L	-	Life correction constant				
a _M	-	Mating surface material factor				
a _T	-	Temperature application factor				
В	mm	Nominal bush length				
С	1/min	Dynamic load frequency				
C _D	mm	Installed diametral clearance				
C _i	mm	Inside chamfer				
C _o	mm	Outside chamfer				
C _T	-	Total number of dynamic load cycles				
D _C	mm	Diameter of burnishing tool				
D _{fl}	mm	Nominal bush flange OD				
D _H	mm	Housing diameter				
D i	mm	Nominal bush and thrust washer ID				
D _{i,a}	mm	Bush ID when assembled in housing				
D _J	mm	Shaft diameter				
D _{Nth}	nvt	Max. thermal neutron dose				
D _o	mm	Nominal bush and thrust washer OD				
d _D	mm	Dowel hole diameter				
d L	mm	Oil hole diameter				
d _P	mm	Pitch circle diameter for dowel hole				
D_{g}	Gy	Max. Gamma radiation dose G _y = J/kg				
F	N	Bearing load				
F _{ch}	N	Test load				
F i	N	Insertion force				
f	-	Coefficient of friction				

Formula Symbol	Unit	Designation			
L	mm	Strip length			
L _H	h	Bearing service life			
Ls	mm	Length of stroke (slideway)			
N	1/min	Rotational speed			
N _E	1/min	Equivalent rotational speed for oscillating movement			
N _{osz}	1/min	Oscillating movement frequency			
p	N/mm ²	Specific load			
\overline{p}_{lim}	N/mm ²	Specific load limit			
p _{sta,max}	N/mm ²	Maximum static load			
p _{dyn,max}	N/mm ²	Maximum dynamic load			
Q	-	Number of load/movement cycles			
R _a	μ m	Surface roughness (DIN 4768, ISO/DIN 4287/1)			
R _{OB}	Ω	Electrical resistance			
S ₃	mm	Bush wall thickness			
S _{fl}	mm	Flange thickness			
S _S	mm	Strip thickness			
S _T	mm	Thrust washer thickness			
T	°C	Temperature			
T _{amb}	°C	Ambient temperature			
T _{max}	°C	Maximum temperature			
T _{min}	°C	Minimum temperature			
<i>t</i> _a	mm	Depth housing recess			
U	m/s	Sliding speed			
W	mm	Strip width			
W _u	mm	Maximum usable strip width			
Z _T	-	Total number of cycles			
α ₁	1/10 ⁶ K	Coefficient of linear thermal expansion parallel to surface			
α_2	1/10 ⁶ K	Coefficient of linear thermal expansion normal to surface			
σ_{c}	N/mm ²	Compressive yield strength			
λ	W/mK	Thermal conductivity			
φ	•	Angular displacement			
η	Ns/mm ²	Dynamic viscosity			

Contents

	Quality	7	Lubrication 2	2
	Formula Symbols and Designations	7.1	Lubricants 2	22
1	Introduction 4	7.2	Tribology	22
2	Basic Forms 4		Boundary lubrication 2	
3	Structure and	7.3	Characteristics of Lubricated Bearings 2	23
	Composition 5	7.4	Design Guidance	
4	Properties 5	7.5	Clearances for lubricated	
4.1	Physical and Mechanical Properties 5		operation	2!
4.2	Chemical Properties 5	7.6	Grooving for lubricated operation	2!
4.3	Frictional Properties 6	7.7	Mating Surface Finish for	
5	Bearing Performance 8	7.8	Iubricated operation	
5.1	McPherson Strut Applications . 8 Wear and Friction Properties 8 McPherson Strut Wear Test 8	8	Bearing Assembly 2	
	McPherson Strut Wear Test 8 McPherson Strut Friction Test 9		Dimensions and Tolerances 2	26
	Cavitation Erosion Resistance 10	8.1	Allowance for Thermal Expansion	>6
	Cavitation Erosion Test	8.2	Tolerances for minimum clearance	
5.2		8.3	Counterface Design 2	
0.2	Glacier Garlock Bearings Jupiter Test Rig	8.4	Installation	29
5.3	Dry Wear Performance 13 Design Factors 13 Specific Load p 13		Insertion Forces 2 Alignment 3 Sealing 3	30
	Specific Load Limit p _{lim}	8.5	Axial Location	30
	Oscillating Movement 14	9	Modification 3	2
	pU Factor	9.1	Cutting and Machining	32
- 4	Bore Burnishing 17 Type of Load 17	9.2	Electroplating	32
5.4	Calculation of Bearing Service Life 18			
	Specific load p 18		Standard Products 3	
	High load factor a _E		DP4 Cylindrical bushes 3	
	Estimation of bearing life L _H 18		DP4 Flanged bushes 3 DP4 Thrust Washers 4	
	Bore Burnishing		DP4 Flanged Thrust Washers	
5.5	Slideways 19 Worked Examples 20		DP4 Strip 4	
6	Data Sheet 21	11	Test Methods 4	2
6.1	Data for bearing design calculations	11.1	Measurement of Wrapped Bushes 4	12

Introduction 1

DP4TM is a composite steel-backed polymer-lined bearing material. It was developed for high duty, oil lubricated, hydraulic applications as for example in automotive suspension McPherson struts and shock absorbers, hydraulic cylinders, gear pumps and motors and axial and radial piston pumps and motors. DP4 is designed for use mainly under lubricated conditions and shows excellent wear resi-

stance, low static and dynamic friction coefficient and a high resistance to both cavitation and flow erosion damage of the polymer bearing surface by the lubricant. DP4 is suitable for sliding, oscillating, reciprocating and rotating applications.

DP4 is also suitable for use with non-lubricating fluids and in light duty unlubricated applications.

2 **Basic Forms**

Standard Components

These products are manufactured to International, National or Glacier Garlock Bearings standards. The following components are standard stock products:

- · Cylindrical Bushes
- Flanged Bushes
- Strip Material

Fig. 1: Standard stock products

Non-Standard Components

These products are manufactured to customer's requirements and include for example:

- Modified Standard Components
- Thrust Washers
- · Flanged Washers

- Half Bearings
- Flat Components
- Deep Drawn Parts
- Pressings
- Stampings

Fig. 2: Non-Standard Components

3 Structure and Composition

DP4 consists of a steel backing to which is bonded a porous sinter bronze interlayer which is overlaid and impregnated with Polytetrafluoroethylene (PTFE) containing a mixture of inorganic fillers and special polymer fibres. The steel backing provides mechanical strength and the bronze sinter layer provides a strong mechanical bond for the filled bearing lining.

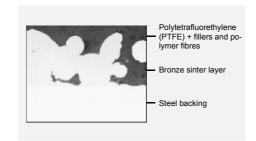


Fig. 3: DP4-microsection

4 Properties

4.1 Physical and Mechanical Properties

		Symbol	Value	Unit	Comment				
Physical	Coefficient of linear thermal expansion :								
Properties	parallel to surface	$\alpha_{\scriptscriptstyle 1}$	11	1/10 ⁶ K					
	normal to surface	$\alpha_{\!\scriptscriptstyle 2}$	30	1/10 ⁶ K					
	Maximum Operating Temperature	T_{max}	+280	°C					
	Minimum Operating Temperature	T_{min}	-200	°C					
Mechanical Properties	Compressive Yield Strength	$\sigma_{\!\scriptscriptstyle m c}$	350	N/mm ²	measured on disc 5 mm diameter x 2.45 mm thick.				
	Maximum Load								
	Static	$\overline{p}_{\text{sta,max}}$	250	N/mm ²					
	Dynamic	$\overline{p}_{dyn,max}$	140	N/mm ²					

Table 1: Physical and mechanical Properties of DP4

4.2 Chemical Properties

The following table provides an indication of the chemical resistance of DP4 to various chemical media.

It is recommended, that the chemical resistance is confirmed by testing if possible.

	Chemical	%	C	Rating
Strong Acids	Hydrochloric Acid	5	20	-
	Nitric Acid	5	20	-
	Sulphuric Acid	5	20	-
Weak Acids	Acetic Acid	5	20	-
	Formic Acid	5	20	-
Bases	Ammonia	10	20	0
	Sodium Hydroxide	5	20	0
Solvents	Acetone		20	+
	Carbon Tetrachloride		20	+
Lubricants and fuels	Paraffin		20	+
	Gasolene		20	+
	Kerosene		20	+
	Diesel Fuel		20	+
	Mineral Oil		70	+
	HFA-ISO46 High Water Fluid		70	+
	HFC-Water-Glycol		70	+
	HFD-Phosphate Ester		70	+
	Water		20	0
	Sea Water		20	-

Table 2: Chemical resistance of DP4

+	Satisfactory: Corrosion damage is unlikely to occur.
0	Acceptable: Some corrosion damage may occur but this will not be sufficient to impair either the structural integrity or the tribological performance of the material.
-	Unsatisfactory: Corrosion damage will occur and is likely to affect either the structural integrity and/or the tribological performance of the material.

4.3 Frictional Properties

DP4 bearings show negligible 'stick-slip' and provide smooth sliding between adjacent surfaces. The coefficient of friction of DP4 depends upon:

- The specific load p [N/mm²]
- The sliding speed U [m/s]
- The roughness of the mating running surface R_a [μm]
- The bearing temperature T [°C].

A typical relationship is shown in Fig. 4, which can be used as a guide to establish

the actual friction under clean, dry conditions after running in.

Exact values may vary by $\pm 20\,\%$ depending on operating conditions. Before running in, the friction may be up to 50 % higher.

After progressively longer periods of dwell under load (e.g. hours or days) the static coefficient of friction on the first movement may be between 1.5 and 3 times greater, particularly before running in.

Effect of Temperature for unlubricated applications

The coefficient of friction of DP4 varies with temperature. Typical values are shown in Fig. 5 for temperatures up to $250\,^{\circ}\text{C}$.

Friction increases at bearing temperatures below 0 $^{\circ}\text{C}.$

Where frictional characteristics are critical to a design they should be established by prototype testing.

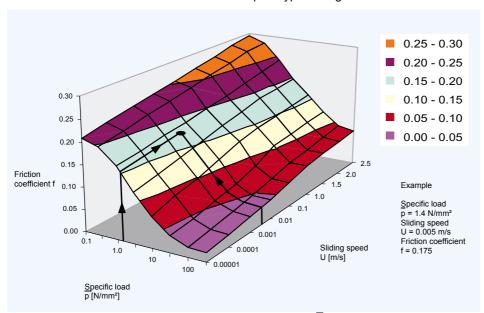


Fig. 4: Variation of friction coefficient f with specific load \bar{p} and speed U at temperature T = 25 °C

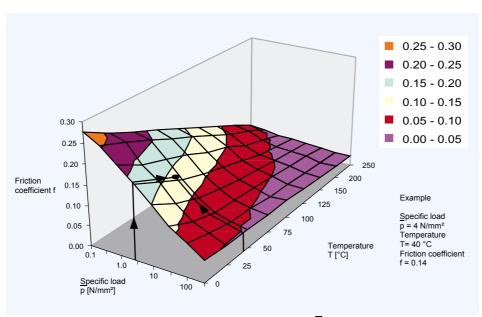


Fig. 5: Variation of friction coefficient f with specific load \overline{p} and temperature T at speed U = 0.01 m/s

Bearing Performance

5 Bearing Performance

5.1 McPherson Strut Applications

DP4 has been developed to provide improved wear, erosion resistance and reduced friction in McPherson strut piston rod guide bush applications under the most deman-

ding of operating conditions. In the following sections, the performance of DP4 is compared with that of the material used in the majority of this type of application.

Wear and Friction Properties

The wear and frictional performance of DP4 has been evaluated in the piston rod guide bush application of a McPherson strut shock absorber using the test rig shown in Fig. 6. The test conditions are

designed to simulate the operational duty of the test strut in service and differ in detail according to the strut manufacturer. The test conditions used are given in Table 3 and Table 4.

McPherson Strut Test Rig

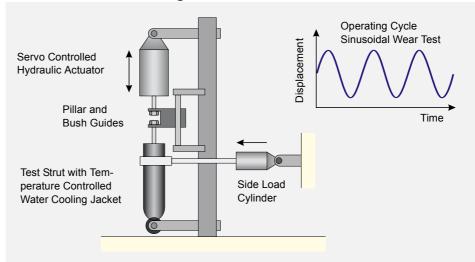


Fig. 6: Principle of the Strut Test Rig

Strut Wear - Test conditions

Waveform	Sine
Frequency	2.5 Hz
Side Load	890 N
Test Duration	100 hours
Stroke	100 mm
Mean Diametral Clearance	0.06 mm
Lubricant	TEX 0358
Foot Valve Temperature	70 °C

Table 3: McPherson strut wear test conditions

Strut Friction - Test conditions

Waveform	Sine
Frequency	0.1 Hz
Side Load	600 N
Stroke	70 mm
Mean Diametral Clearance	0.06 mm
Lubricant	TEX 0358
Foot Valve Temperature	Ambient

Table 4: McPherson strut friction test conditions

The relative wear and frictional performance of DP4 tested under these conditions are shown in Figures 7-9. Actual results for the wear rate and friction are not quoted because these depend strongly on

the actual test conditions and design of the strut under test. The relative performance plots shown thus provide the best indication as to the benefits offered by DP4 in this class of application.

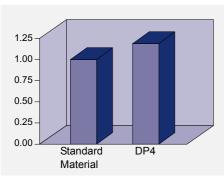


Fig. 7: Relative wear resistance

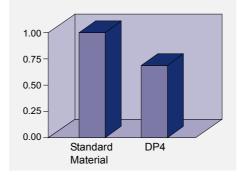


Fig. 9: Relative dynamic friction coefficient

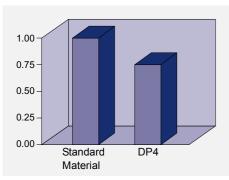


Fig. 8: Relative static friction coefficient

Bearing Performance

Cavitation Erosion Resistance

Under certain operating conditions, the PTFE lining of the McPherson strut piston rod guide bush can suffer erosion damage, due to cavitation and flow erosion effects from the oil film within the bearing. The test

rig shown in Fig. 10 is designed to reproduce the cavitation erosion damage to the bearing lining of the test specimen. The test conditions are given in Table 5.

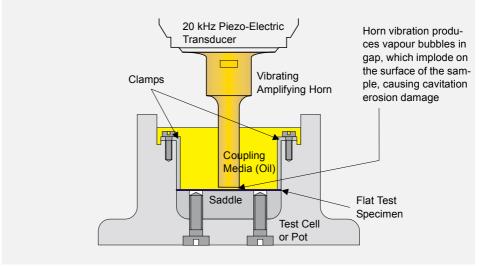


Fig. 10: Principle of the cavitation erosion test rig

Cavitation Erosion - Test Conditions

Amplitude	0.015 mm
Frequency	20 kHz
Separation	1 mm
Test Duration	30 minutes
Lubricant	TEX 0358
Temperature	Ambient

Table 5: Cavitation erosion test conditions

The relative resistance to cavitation damage of DP4 as evaluated on this test rig is shown in Fig. 11.

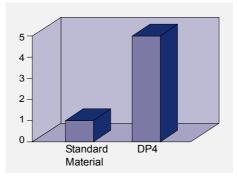


Fig. 11: Relative resistance to cavitation erosion

Flow Erosion Resistance

The test rig shown in Fig. 12 is designed to reproduce flow erosion damage to the bea-

ring lining of the test specimen. The test conditions are given in Table 6.

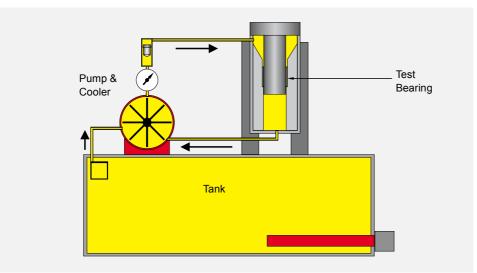


Fig. 12: Principle of the flow erosion test rig

Flow Erosion - Test Conditions

Bearing Diameter	20 mm
Bearing Length	15 mm
Diametral Clearance	0.11 mm
Pressure	13.8 MPa
Flow Rate	5 l/min
Test Duration	20 hours
Shaft Surface Finish	0.15 μm ±0.05
Temperature	Ambient

Table 6: Flow erosion test conditions

The relative resistance to flow erosion damage of DP4 as evaluated on this test rig is shown in Fig. 13.

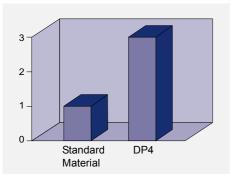


Fig. 13: Relative resistance to flow erosion

Bearing Performance

5.2 Hydraulic Applications

DP4 also shows excellent wear and frictional performance in a wide range of oil lubricated hydraulic applications.

The wear resistance of Glacier DP4 under steady load oil immersed boundary lubrica-

tion conditions has been evaluated using the test rig shown in Fig. 14. The test conditions are given in Table 7.

Glacier Garlock Bearings Jupiter Test Rig

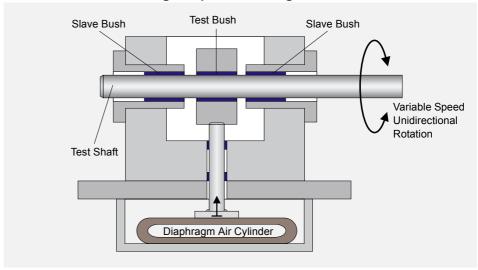


Fig. 14: Principle of the Glacier Garlock Bearings Jupiter test rig

Lubricated Wear - Test Conditions

Bearing Diameter	20 mm
Bearing Length	15 mm
Mean Diametral Clearance	0.10 mm
Speed	0.11 m/s
Lubricant	ISO VG 46 hydraulic oil

Table 7: Lubricated wear test conditions

The relative pU limits with boundary lubrication of DP4 and the material used in many high performance hydraulic pump applications as determined from these

tests are shown in Fig. 15. The limiting $\overline{p}U$ depends upon the actual operating conditions and hence the relative performance only is given for guidance.

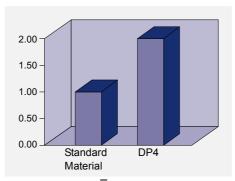


Fig. 15: Relative pU limits

5.3 Dry Wear Performance

Design Factors

The main parameters when determining the size or calculating the service life for a DP4 bearing are:

- Specific Load Limit plim
- pU Factor
- · Mating surface roughness Ra

Specific Load p

For the purpose of assessing bearing performance the specific load \bar{p} is defined as the working load divided by the projected area of the bearing and is expressed in N/mm².

- · Mating surface material
- Temperature T
- Other environmental factors e.g. housing design, dirt, lubrication

The following calculation can be used to estimate the bearing service life of DP4 under dry running conditions.

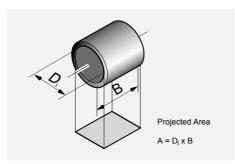


Fig. 16: Projected Area

Cylindrical Bush

(5.3.1)
$$\bar{p} = \frac{F}{D_i \cdot B}$$
 [N/mm²]

Thrust Washer

(5.3.2)
$$\bar{p} = \frac{4F}{\pi \cdot (D_o^2 - D_i^2)}$$
 [N/mm²]

Flanged Bush (Axial Loading)

(5.3.3)
$$\bar{p} = \frac{F}{0.04 \cdot (D_{ff}^2 - D_i^2)}$$

Slideway

(5.3.4)
$$\bar{p} = \frac{F}{L \cdot W}$$

Specific Load Limit p_{lim}

The maximum load which can be applied to a DP4 bearing can be expressed in terms of the Specific Load Limit, which depends on the type of the loading. It is highest under steady loads. Conditions of dynamic load or oscillating movement which produce fatigue stress in the bearing result in a reduction in the permissible Specific Load Limit.

In general the specific load on a DP4 bearing should not exceed the Specific Load Limits given in Table 8.

The values of Specific Load Limit specified in Table 8 assume good alignment between the bearing and mating surface (Fig. 33).

Bearing Performance

Maximum specific load p_{lim}

Type of loading		p _{lim} [N/mm ²]								
steady load, rotating movement	140	40								
steady load, osci- llating movement		140 140 115 95 85 80 60 44 30							30	20
No. of movement cycles Q	1000	2000	4000	6000	8000	10 ⁴	10 ⁵	10 ⁶	10 ⁷	108
dynamic load, rotating or oscil- lating movement	60	60	50	46	42	40	30	22	15	10
No. of load cycles Q	1000	2000	4000	6000	8000	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸

Table 8: Specific load limit

Permanent deformation of the DP4 bearing lining may occur at specific loads above 140 N/mm². Under these conditions DP4 should only be used after consulting our application engineers or with slow intermittent movements.

The permissible maximum load on a thrust washer is higher than that on the flange of a flanged bush, and under conditions of high axial loads a thrust washer should be specified.

Sliding Speed U

Speeds in excess of 2.5 m/s sometimes lead to overheating, and a running in procedure may be beneficial.

This could consist of a series of short runs progressively increasing in duration from an initial run of a few seconds.

Calculation of Sliding Speed U

Continuous Rotation

Bushes

(5.3.5)
$$U = \frac{D_i \cdot \pi \cdot N}{60 \cdot 10^3}$$
 [m/s]

Thrust Washers

(5.3.6)
$$U = \frac{D_o + D_i}{2} \cdot \pi \cdot N$$
 [m/s]
$$60 \cdot 10^3$$

Oscillating Movement

Bushes

(5.3.7)
$$U = \frac{D_i \cdot \pi}{60 \cdot 10^3} \cdot \frac{4\phi \cdot N_{osz}}{360}$$
 [m/s]

Thrust Washers

(5.3.8)
$$U = \frac{D_o + D_i}{2} \cdot \pi \cdot \frac{4\phi \cdot N_{osz}}{360}$$

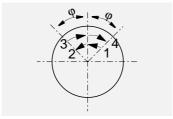


Fig. 17: Oscillating cycle φ

pU Factor

The useful operating life of a DP4 bearing is governed by the $\overline{p}U$ factor, the product of the specific load \overline{p} [N/mm²] and the sliding speed U [m/s].

For thrust washers and flanged bush thrust faces the rubbing velocity at the mean diameter is used.

	DP4	Unit
p	140	N/mm²
U	2.5	m/s
pU continuous	0.5	N/mm² x m/s
pU intermittent	1.0	N/mm² x m/s

Table 9: Typical data \overline{p} , U, \overline{p} U

pU factors up to 1.0 N/mm² x m/s can be accommodated for short periods, whilst for continuous rating, pU factors up to 0.5 N/mm² x m/s can be used, depending upon the operating life required.

Calculation of pU Factor

$$[N/mm^2 \times m/s]$$

$$\bar{p}U = \bar{p} \cdot U$$

Application Factors

The following factors influence the bearing performance of DP4 and must be considered in calculating the required dimensions

or estimating the bearing life for a particular application.

Temperature

The useful life of a DP4 bearing depends upon the operating temperature.

Under dry running conditions frictional heat is generated at the rubbing surface of the bearing dependent on the pU condition. For a given pU factor the operating temperature of the bearing depends upon the temperature of the surrounding environ-

ment, the heat dissipation properties of the housing and the mating surface. Intermittent operation affects the heat dissipation from the assembly and hence the operating temperature of the bearing.

The effect of temperature on the operating life of DP4 bearings is indicated by the factor a_T shown in Table 10.

Mode of Operation	Nature of housing	Temperature of bearing environment T_{amb} [${}^{\circ}\!$					
		25	60	100	150	200	280
Dry continuous operation	Average heat dissipating qualities	1.0	8.0	0.6	0.4	0.2	0.1
Dry continuous operation	Light pressings or isolated housing with poor heat dissipating qualities	0.5	0.4	0.3	0.2	0.1	-
Dry continuous operation	Non-metallic housings with bad heat dissipating qualities	0.3	0.3	0.2	0.1	-	-
Dry intermittent operation (duration less than 2 min, followed by a longer dwell period)	Average heat dissipating qualities	2.0	1.6	1.2	0.8	0.4	0.2

Table 10: Temperature application factor $a_{\scriptscriptstyle T}$

Bearing Performance

Mating Surface

The effect of mating surface material type on the operating life of DP4 bearings is indicated by the mating surface factor $a_{\rm M}$ and life correction constant $a_{\rm L}$ shown in Table 11.

Note:

The factor values given assume a mating surface finish of \leq 0.4 μ m R_a .

- A ground surface is preferred to fine turned
- Surfaces should be cleaned of abrasive particles after polishing.
- Cast iron surfaces should be ground to <0.3 $\mu m\ R_a.$
- The grinding cut should be in the same direction as the bearing motion relative to the shaft.

Material	Mating Surface Factor $a_{ m M}$	Life correction constant a _L
Steel and Cast Iron		
Carbon Steel	1	400
Carbon Manganese Steel	1	400
Alloy Steel	1	400
Case Hardened Steel	1	400
Nitrided Steel	1	400
Salt bath nitrocarburised	1	400
Stainless Steel (7-10 % Ni, 17-20 % Cr)	2	400
Cast Iron (0.3 μm R _a)	1	400

Table 11: Mating surface factor a_M and life correction constant a_L

Bearing Size

The running clearance of a DP4 bearing increases with bearing diameter resulting in a proportionally smaller contact area between the shaft and bearing. This reduction in contact area has the effect of increa-

sing the actual unit load and hence $\overline{p}U$ factor. The bearing size factor (Fig. 18) is used in the design calculations to allow for this effect.

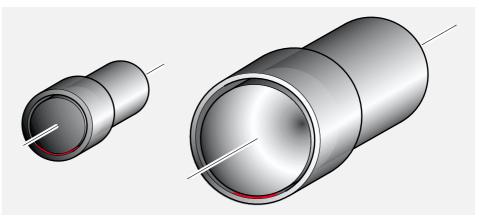


Fig. 18: Contact area between bearing and shaft

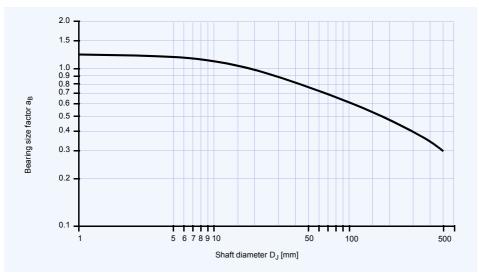


Fig. 19: Bearing size factor a_B

Bore Burnishing

Burnishing the bore of a DP4 bearing results in a reduction in the wear performance. The application factor a_{C} given in

Table 12 is used in the design calculation to allow for this effect. Machining DP4 is not recommended.

Degree of sizing		Application factor a _C
Burnishing:	0.025 mm	0.8
Excess of burnishing tool diameter over	0.038 mm	0.6
mean bore size	0.050 mm	0.3

Table 12: Bore burnishing application factor a_c

Type of Load

The type of load is considered in formula (5.4.9), Page 19 and (5.4.10), Page 19.

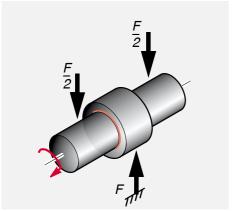


Fig. 20: Steady load, bush stationary, shaft rotating

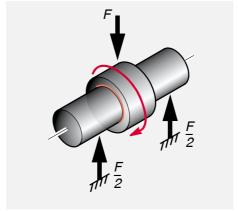


Fig. 21: Rotating load, shaft stationary, bush rotating

5.4 Calculation of Bearing Service Life

Where the size of a bearing is governed largely by the space available the following calculation can be used to determine whether its useful life will satisfy the requirements. If the calculated life is inadequate, a redesign should be considered.

Specific load p

Bushes

(5.4.1)
$$\bar{p} = \frac{F}{D_i \cdot B}$$

Flanged Bushes

(5.4.2)
$$\bar{p} = \frac{F}{0.04 \cdot (D_{fl}^2 - D_i^2)}$$

High load factor a_F

If a_E is negative then the bearing is overloaded. Increase the bearing diameter and/or length.

(5.4.4)
$$a_E = \frac{\bar{p}_{lim} - \bar{p}}{\bar{p}_{lim}}$$
 Film see Tab. 8, page 14

Modified pU Factor

Bushes

(5.4.5)
$$[\text{N/mm}^2 \times \text{m/s}]$$

$$\overline{p}U = \frac{5 \cdot 25 \cdot 10^{-5} F \cdot N}{a_E \cdot B \cdot a_T \cdot a_M \cdot a_B}$$

Thrust Washers

$$\bar{p}U = \frac{3.34 \cdot 10^{-5} F \cdot N}{a_E \cdot (D_o - D_i) \cdot a_T \cdot a_M \cdot a_B}$$

Estimation of bearing life L_H **Bushes (Steady load)**

(5.4.9)
$$L_{H} = \frac{265}{\overline{p}U} - a_{L}$$

Thrust Washers

(5.4.3)
$$\bar{p} = \frac{4F}{p \cdot (D_o^2 - D_i^2)}$$

Flanged Bushes

$$\bar{p}U = \frac{6.5 \cdot 10^{-4} F \cdot N}{a_E \cdot (D_{fl} - D_i) \cdot a_T \cdot a_M \cdot a_B}$$

For oscillating movement, calculate the average rotational speed.

$$N_{E} = \frac{4\phi \cdot N_{OSZ}}{360}$$
 [1/min]

Bushes (Rotating load)

(5.4.10) [h]
$$L_{H} = \frac{530}{\bar{p}U} - a_{L}$$

5

Flanged Bushes (Axial load)

(5.4.11) [h]
$$L_{H} = \frac{175}{\bar{p}U} - a_{L}$$

Thrust Washers

(5.4.12) [h]
$$L_{H} = \frac{175}{\bar{p}U} - a_{L}$$

Bore Burnishing

If the DP4 bush is bore burnished then this must be allowed for in estimating the bearing life by the application factor a_C (Table 12, Page 18).

Estimated Bearing Life

(5.4.13) [h]
$$L_H = L_H \cdot a_C$$

$$a_C \text{ see Table 12, Page 18}$$

For Oscillating Movements or Dynamic loads

a_L see Table 11, Page 17

Calculate estimated number of cycles Z_T (5.4.14) [cycles]

$$Z_T = L_H \cdot N_{osz} \cdot 60$$

If the required bearing life is known, the total number of cycles can be determined.

Check that Z_T is less than total number of cycles Q for the operating specific load \overline{p}_{lim} (Table 8, Page 15).

If $Z_T < Q$, bearing life will be limited by wear after Z_T cycles.

If
$$Z_T > Q$$
, bearing life will be limited by fati-
gue after Z_T cycles.

$$Z_T = L_H \cdot C \cdot 60$$

Slideways

Specific load factor

(5.4.16)
$$a_{E1} = A - \frac{F}{\bar{p}_{lim}}$$

If negative the bearing is overloaded and the bearing area should be increased.

Speed, temperature and material application factor

(5.4.17) [-]
$$a_{E2} = \frac{280 \cdot a_{T} \cdot a_{M}}{F \cdot U}$$

$$a_{T} \text{ see Table 10, Page 16}$$

$$a_{M} \text{ see Table 11. Page 17}$$

Relative contact area factor

(5.4.18)
$$a_{E3} = \frac{A}{A_M}$$

Estimated bearing life

(5.4.19)
$$L_{H} = a_{E1} \cdot a_{E2} \cdot a_{E3} - a_{L}$$

Note:

Estimated bearing lives greater than 4000 hours are subject to error due to inaccuracies in the extrapolation of test data.

5.5 Worked Examples

Cylindrical Bush

Given:			
Load Details	Steady Load	Inside Diameter Di	40 mm
	Continuous Rotation	Length B	30 mm
Shaft	Steel	Bearing Load F	5000 N
	Unlubricated at 25 °C	Rotational Speed N	25 1/min

Calculation Constants and Application Factors				
Specific Load Limit p _{lim} 140 N/mm ² (Table 8, Page 15)				
Application Factor a _T 1.0 (Table 10, Page				
Material Application Factor a _M	1.0	(Table 11, Page 17)		
Bearing Size Factor a _B	0.85	(Fig. 19, Page 18)		
Life Correction Constant a _L	400	(Table 11, Page 17)		

Calculation	Ref	Value
Specific Load p [N/mm²]	(5.4.1), page 18	$\bar{p} = \frac{F}{D_i \cdot B} = \frac{5000}{40 \cdot 30} = 4.17$
Sliding Speed U [m/s]	(5.3.5), page 14	$U = \frac{D_1 \cdot \pi \cdot N}{60 \cdot 10^3} = \frac{40 \cdot \pi \cdot 25}{60000} = 0.052$
High Load Factor a _E [-] (must be >0)	(5.4.4), page 18	$a_E = \frac{\overline{p}_{lim} - \overline{p}}{\overline{p}_{lim}} = \frac{140 - 4.17}{140} = 0.970$
Modified pU Factor [N/mm² x m/s]	(5.4.5), page18	$\bar{p}U = \frac{5.25 \cdot 10^{-5} \cdot F \cdot N}{a_E \cdot B \cdot a_T \cdot a_M \cdot a_B} = \frac{6.5625}{24.265} = 0.27$
Life L _H [h]	(5.4.9), page 18	$L_H = \frac{265}{\bar{p}U} - a_L = \frac{265}{0.27} - 400 = 581$

Thrust washer

Given:			
Load Details	Axial Load	Inside Diameter Di	38 mm
	Continuous Rotation	Outside Diameter Do	62 mm
Shaft	Steel	Bearing Load F	6500 N
	Unlubricated at 25 °C	Rotational Speed N	10 1/min

Calculation Constants and Application Factors			
Specific Load Limit plim	140 N/mm ²	(Table 8, Page 15)	
Application Factor a _T	1.0	(Table 10, Page 16)	
Material Application Factor a _M	1.0	(Table 11, Page 17)	
Bearing Size Factor a _B	0.85	(Fig. 19, Page 18)	
Life Correction Constant a	400	(Table 11, Page 17)	

Calculation	Ref	Value
Specific Load p [N/mm²]	(5.4.3), page 18	$\pi \cdot (D_o^2 - D_i^2) \pi \cdot (62^2 - 38^2)$
Sliding Speed U [m/s]	(5.3.6), page 14	$U = \frac{\frac{D_o + D_i}{2} \cdot \pi \cdot N}{60 \cdot 10^3} = \frac{\frac{62 + 38}{2} \cdot \pi \cdot 10}{60 \cdot 10^3} = 0.026$
High Load Factor a _E [-] (must be >0)	(5.4.4), page 18	$a_E = \frac{\bar{p}_{lim} - \bar{p}}{\bar{p}_{lim}} = \frac{140 - 3.45}{140} = 0.975$
Modified pU Factor [N/mm² x m/s]	(5.4.7), page 18	$\bar{p}U = \frac{3.34 \cdot 10^{-5} \cdot F \cdot N}{a_E \cdot (D_o - D_i) \cdot a_T \cdot a_M \cdot a_B} = \frac{2.171}{19.28} = 0.113$
Life L _H [h]	(5.4.17), page 19	$L_H = \frac{175}{\bar{p}U} - a_L = \frac{175}{0.113} - 400 = 1149$

Flanged Bush

Given:			
Load Details	Axial Load	Flange Outside Diameter Dfl	23 mm
	Continuous Rotation	Inside Diameter Di	15 mm
Shaft	Steel	Bearing Load F	250 N
	Unlubricated at 25 °C	Rotational Speed N	5 1/min

Calculation Constants and Application Factors				
Specific Load Limit p _{lim} 140 N/mm ² (Table 8, Page 15)				
Application Factor a _T	1.0	(Table 10, Page 16)		
Material Application Factor a _M	1.0	(Table 11, Page 17)		
Bearing Size Factor a _B	1.0	(Fig. 19, Page 18)		
Life Correction Constant a	400	(Table 11, Page 17)		

Calculation	Ref	Value
Specific Load p [N/mm²]	(5.4.2), page 18	$\bar{p} = \frac{F}{0.04 \cdot (D_{fl}^2 - D_i^2)} = \frac{250}{0.04 \cdot (23^2 - 15^2)} = 20.55$
Sliding Speed U [m/s]	(5.3.6), page14	$U = \frac{\frac{D_n + D_1}{2} \cdot \pi \cdot N}{\frac{20}{60 \cdot 10^3}} = \frac{\frac{23 + 15}{2} \cdot \pi \cdot 5}{\frac{20}{60 \cdot 10^3}} = 0.005$
High Load Factor a _E [-] (must be >0)	(5.4.4), page 18	$a_E = \frac{\bar{p}_{lim} - \bar{p}}{\bar{p}_{lim}} = \frac{140 - 20.55}{140} = 0.853$
Modified pU Factor [N/mm² x m/s]	(5.4.6), page 18	$\bar{p}U = \frac{6.5 \cdot 10^{-4} \cdot F \cdot N}{a_E \cdot (D_{fl} - D_l) \cdot a_T \cdot a_M \cdot a_B} = \frac{0.8125}{6.82} = 0.119$
Life L _H [h]	(5.4.11), page 18	

6 Data Sheet

Application:

6.1 Data for bearing design calculations

	aring design ca			
B Cylindrical Bush	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	B S _{ff}	S _T O Slideplate	Special
Rotational movement	Steady load	Rotating load	Oscillating mo	(Sketch)
Quantity Dimensions in mm Inside Diameter Outside Diameter Length Flange Diameter Flange Thickness Length of slideplate Width of slideplate Thickness of slideplate	D _i D _o B D _{fl} S _{fl} L W S _S	Shaft Bearing H Operatin Ambient to Housing to perties Light present the poor Non metal transfer poor transfer po	g Environment emperature T with good heat transfer esing or insulated hous or heat transfer propert Il housing with poor he	sing ties
Radial load or specific load Axial load or specific load	F [N] p [N/mm²] F [N] p [N/mm²]	Mating s Material Hardness Surface fi	HI nish R	B/HRC R _a [μm]
Movement Rotational speed Speed Length of Stroke Frequency of Stroke Oscillating cycle Oscillating frequency Service hours per day Continuous operation Intermittent operation	N [1/min] U [m/s] L _S [mm] [1/min] φ [°] N _{OSZ} [1/min]	Process f	us lubrication luid lubrication rication only namic conditions Fluid	η
Operating time Days per year Customer Data Company:	City:	Required Project: Name:	service life	L _H [h] Date: Signature:

7 Lubrication

DP4 provides excellent performance in lubricated applications. The following sections describe the basics of lubrication and

provide guidance on the application of DP4 in such environments.

7.1 Lubricants

DP4 can be used with most fluids including:

- · water
- lubricating oils
- · engine oil
- · turbine oil
- · hydraulic fluid
- · solvent
- · refrigerants

In general, the fluid will be acceptable if it does not chemically attack the filled PTFE overlay or the porous bronze interlayer.

Where there is doubt about the suitability of a fluid, a simple test is to submerge a sample of DP4 material in the fluid for two to three weeks at 15-20 °C above the operating temperature.

The following will usually indicate that the fluid is not suitable for use with DP4:

- A significant change in the thickness of the DP4 material,
- A visible change in the bearing surface other than some discolouration or staining,
- A visible change in the microstructure of the bronze interlayer.

7.2 Tribology

There are three modes of lubricated bearing operation which relate to the thickness of the developed lubricant film between the bearing and the mating surface:

- · Hydrodynamic lubrication
- · Mixed film lubrication
- · Boundary lubrication.

These three modes of operation depend upon:

- · Bearing dimensions
- Clearance
- Load
- Speed
- Lubricant Viscosity
- · Lubricant Flow

Hydrodynamic lubrication

Characterised by:

- Complete separation of the shaft from the bearing by the lubricant film
- Very low friction and no wear of the bearing or shaft since there is no contact
- · Coefficients of friction of 0.001 to 0.01

Hydrodynamic conditions occur when

(7.2.1)
$$\bar{p} \le \frac{U \cdot \eta}{7.5} \cdot \frac{B}{D_i}$$
 [N/mm²]

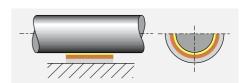


Fig. 22: Hydrodynamic lubrication

Mixed film lubrication

Characterised by:

- Combination of hydrodynamic and boundary lubrication.
- Part of the load is carried by localised areas of self pressurised lubricant and the remainder supported by boundary lubrication.
- Friction and wear depend upon the degree of hydrodynamic support developed.

 DP4 provides low friction and high wear resistance to support the boundary lubricated element of the load.

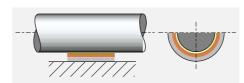


Fig. 23: Mixed film lubrication

Boundary Iubrication

Characterised by:

- Rubbing of the shaft against the bearing with virtually no lubricant separating the two surfaces.
- Bearing material selection is critical to performance.
- Shaft wear is likely due to contact between bearing and shaft.
- The excellent properties of DP4 material minimises wear under these conditions.
- The dynamic coefficient of friction with DP4 is typically 0.05 to 0.3 under boundary lubrication conditions.

 The static coefficient of friction with DP4 is typically slightly above the dynamic coefficient of friction under boundary lubrication conditions.

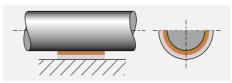


Fig. 24: Boundary lubrication

7.3 Characteristics of Lubricated Bearings

DP4 is particularly effective in the most demanding of lubricated applications where full hydrodynamic operation cannot be maintained, for example:

· High load conditions

In highly loaded applications operating under boundary or mixed film conditions DP4 shows excellent wear resistance and low friction.

· Start up and shut down under load

With insufficient speed to generate a hydrodynamic film the bearing will operate under boundary or mixed film conditions.

- DP4 minimises wear
- DP4 requires less start-up torque than conventional metallic bearings.

· Sparse lubrication

Many applications require the bearing to operate with less than the ideal lubricant supply, typically with splash or mist lubrication only.

DP4 requires significantly less lubricant than conventional metallic bearings.

Non lubricating fluids

DP4 operates satisfactorily in low viscosity and non lubricating fluids such as water and some process fluids.

Note the following however:

If a DP4 bearing is required to run dry after running in water under non hydrodynamic conditions then the wear resistance will be substantially reduced due to an increased amount of bedding in wear.

Fig. 25, Page 25 shows the three lubrication regimes discussed above plotted on a graph of sliding speed vs the ratio of specific load to lubricant viscosity.

In order to use Fig. 24

- Using the formula in Section 5:
 - Calculate the specific load p,
 - Calculate the shaft surface speed U.
- Using the viscosity temperature relationships presented in Table 13:
 - Determine the viscosity in centipoise of the lubricant.

Note:

Viscosity is a function of operating temperature. If the operating temperature of the

fluid is unknown, a provisional temperature of 25 °C above ambient can be used.

7.4 Design Guidance

	сР														
Temperature (°C)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
Lubricant															
ISO VG 32	310	146	77	44	27	18	13	9.3	7.0	5.5	4.4	3.6	3.0	2.5	2.2
ISO VG 46	570	247	121	67	40	25	17	12	9.0	6.9	5.4	4.4	3.6	3.0	2.6
ISO VG 68	940	395	190	102	59	37	24	17	12	9.3	7.2	5.8	4.7	3.9	3.3
ISO VG 100	2110	780	335	164	89	52	33	22	15	11.3	8.6	6.7	5.3	4.3	3.6
ISO VG 150	3600	1290	540	255	134	77	48	31	21	15	11	8.8	7.0	5.6	4.6
Diesel oil	4.6	4.0	3.4	3.0	2.6	2.3	2.0	1.7	1.4	1.1	0.95				
Petrol	0.6	0.56	0.52	0.48	0.44	0.40	0.36	0.33	0.31						
Kerosene	2.0	1.7	1.5	1.3	1.1	0.95	0.85	0.75	0.65	0.60	0.55				
Water	1.79	1.30	1.0	0.84	0.69	0.55	0.48	0.41	0.34	0.32	0.28				

Table 13: Viscosity

Explanation to Fig. 24

Area 1

The bearing will operate with boundary lubrication and pU factor will be the major determinant of bearing life. DP4 bearing performance can be calculated using the

method given in Section 5, although the result will probably underestimate the bearing life.

Area 2

The bearing will operate with mixed film lubrication and pU factor is no longer a significant parameter in determining the

bearing life. DP4 bearing performance will depend upon the nature of the fluid and the actual service conditions.

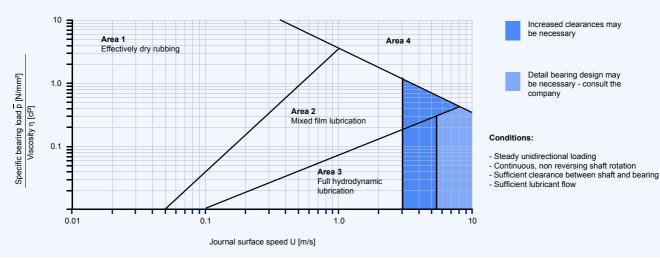


Fig. 25: Design guide for lubricated application

Area 3

The bearing will operate with hydrodynamic lubrication. Bearing wear will be determined only by the cleanliness of the

lubricant and the frequency of start up and shut down.

Area 4

These are the most demanding operating conditions. The bearing is operated under either high speed or high bearing load to viscosity ratio, or, a combination of both.

These conditions may cause

- · excessive operating temperature and/or
- · high wear rate.

Bearing performance may be improved by the addition of one or more grooves to the bearing and a shaft surface finish <0.05 μ m R_a.

7.5 Clearances for lubricated operation

The recommended shaft and housing diameters given for standard DP4 bushes will provide sufficient clearance for applications operating with boundary lubrication.

For bearings operating with mixed film or hydrodynamic lubrication it may be necessary to improve the fluid flow through the bearing by reducing the recommended shaft diameter by approximately 0.1 %, particularly when the shaft surface speed exceeds 2.5 m/s.

7.6 Grooving for lubricated operation

In demanding applications an axial oil groove will improve the performance of DP4. Fig. 26 shows the recommended form and location of a single groove with

respect to the applied load and the bearing split. Glacier Garlock Bearings can manufacture special DP4 bearings with embossed or milled grooves on request.

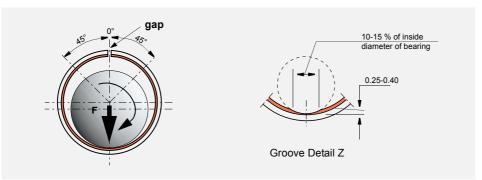


Fig. 26: Location of grooves

7.7 Mating Surface Finish for lubricated operation

- $R_a \le 0.4 \mu m$ Boundary lubrication
- R_a = 0.1-0.2 μm Mixed film or hydrodynamic conditions
- $R_a \le 0.05 \ \mu m$ for the most demanding operating conditions

7.8 Grease Lubrication

DP4 is not generally recommended for use with grease lubrication.

In particular the following must be avoided:

- · Dynamic loads which can result in ero-
- sion of the PTFE bearing surface.
- Greases with EP additives or fillers such as graphite or MoS₂ which can cause rapid wear of DP4.

Bearing Assembly

8 Bearing Assembly

Dimensions and Tolerances

DP4 bushes are prefinished in the bore, and except in very exceptional circumstances, must not be burnished, broached or otherwise modified. It is essential that the correct running clearance is used and that both the diameter of the shaft and the bore of the housing are finished to the limits given in the tables. Under dry running conditions any increase in the clearances given will result in a proportional reduction in performance.

If the bearing housing is unusually flexible the bush will not close in by the calculated

amount and the running clearance will be more than the optimum. In these circumstances the housing should be bored slightly undersize or the journal diameter increased, the correct size being determined by experiment.

Where free running is essential, or where light loads (less than 0.1 N/mm²) prevail and the available torque is low, increased clearance is required and it is recommended that the shaft size quoted in the table be reduced by 0.025 mm.

8.1 Allowance for Thermal Expansion

For operation in high temperature environments the clearance should be increased by the amounts indicated by Fig. 27 to compensate for the inward thermal expansion of the bearing lining.

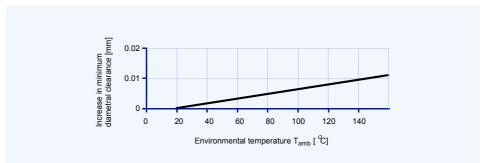


Fig. 27: Increase in diametral clearance

If the housing is non-ferrous then the bore should be reduced by the amounts given in Table 14, in order to give an increased interference fit to the bush, with a similar reduction in the journal diameter additional to that indicated by Fig. 27.

Housing material	Reduction in housing diameter per 100 °C rise	Reduction in shaft diameter per 100 °C rise				
Aluminium alloys	0.1 %	0.1 % + values from Fig. 27				
Copper base alloys	0.05 %	0.05 % + values from Fig. 27				
Steel and cast iron	-	values from Fig. 27				
Zinc base alloys	0.15 %	0.15 % + values from Fig. 27				

Table 14: Allowance for high temperature

8.2 Tolerances for minimum clearance

Where it is required to keep the variation of assembled clearance to a minimum, closer tolerances can be specified towards the upper end of the journal tolerance and the lower end of the housing tolerance.

If housings to H6 tolerance are used, then the journals should be finished to the following limits.

D _i	DJ
<25 mm	-0.019 -0.029
>25 mm < 50 mm	-0.021 -0.035

Table 15: Shaft tolerances for use with H6 housings

The sizes in Table 16 give the following nominal clearance range.

D _i	C _D
10 mm	0.005 - 0.078
50 mm	0.005 - 0.130

Table 16: Clearance vs bearing diameter

Sizing

The burnishing of the bore of an assembled DP4 bush in order to achieve a smaller clearance tolerance is only permissible if a substantial reduction in dry wear performance is acceptable. Fig. 28 shows a recommended burnishing tool for the sizing of DP4 bushes.

The coining section of the burnishing tool should be case hardened (case depth 0.6-1.2 mm, HRC 60±2) and polished ($R_Z\approx 1\mu m).$

Note: Ball burnishing or fine boring of DP4 bushes is not recommended.

Assembled bush Inside-Ø	Required bush Inside-Ø	Required burnishing tool-ØDC
D _{i,a}	$D_{i,a} + 0.025$	$D_{i,a} + 0.06$
$D_{i,a}$	$D_{i,a} + 0.038$	$D_{i,a} + 0.08$
$D_{i,a}$	$D_{i,a} + 0.050$	$D_{i,a} + 0.1$

Table 17: Burnishing Tool Tolerances

The values given in Table 17 indicate the dimensions of the burnishing tool required to give specific increases in the bearing bore diameter.

Exact values must be determined by test.

The reduction in bearing performance as a result of burnishing is allowed for in the bearing life calculation by the application factor $a_{\rm C}$ (Table 12, Page 18).

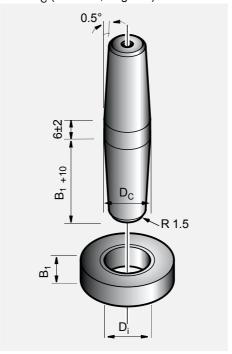


Fig. 28: Burnishing Tool

8.3 Counterface Design

The suitability of mating surface materials and recommendations of mating surface finish for use with DP4 are discussed in detail on page 16.

DP4 is normally used in conjunction with ferrous journals and thrust faces, but in damp or corrosive surroundings, particularly without the protection of oil or grease, stainless steel, hard chromium plated mild steel, or hard anodised aluminium is recommended. When plated mating surfaces are specified the plating should possess adequate strength and adhesion,

particularly if the bearing is to operate with high fluctuating loads.

The shaft or thrust collar used in conjunction with the DP4 bush or thrust washer must extend beyond the bearing surface in order to avoid cutting into it. The mating surface must also be free from grooves or flats, the end of the shaft should be given a lead-in chamfer and all sharp edges or projections which may damage the soft overlay of the DP4 must be removed.

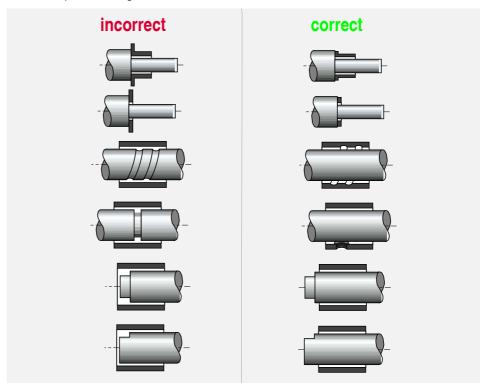


Fig. 29: Counterface design

8

8.4 Installation

Fitting of cylindrical Bushes

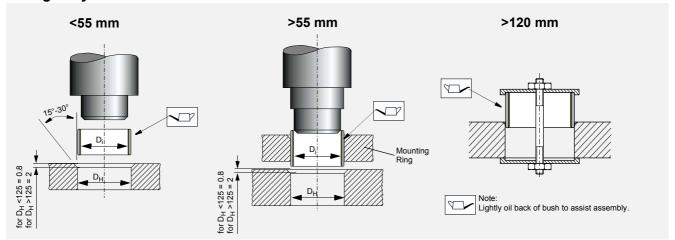


Fig. 30: Fitting of cylindrical bushes

Fitting of flanged bushes

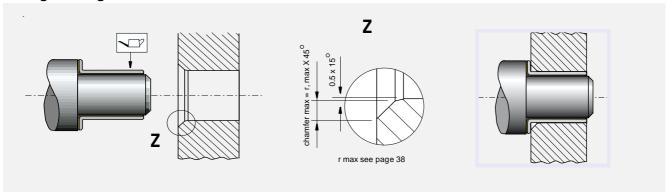


Fig. 31: Fitting of flanged bushes

Insertion Forces

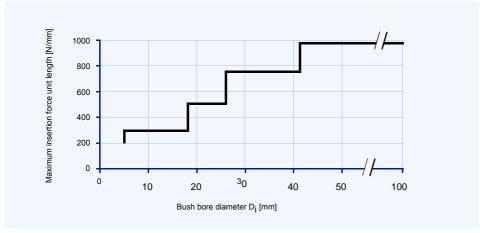


Fig. 32: Maximum insertion force F_i

Bearing Assembly

Alignment

Accurate alignment is an important consideration for all bearing assemblies. With DP4 bearings misalignment over the

length of a bush (or pair of bushes), or over the diameter of a thrust washer should not exceed 0.020 mm as illustrated in Fig. 33.

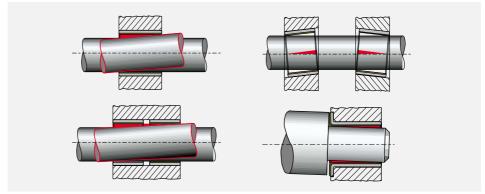


Fig. 33: Alignment

Sealing

While Glacier DP4 can tolerate the ingress of some contaminant materials into the bearing without loss of performance, where there is the possibility of highly

abrasive material entering the bearing, a suitable sealing arrangement, as illustrated in Fig. 34 should be provided.

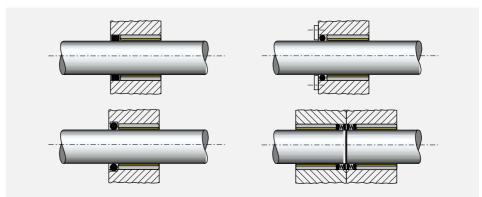


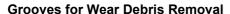
Fig. 34: Recommended sealing arrangements

8.5 Axial Location

Where axial location is necessary, it is advisable to fit DP4 thrust washers in con-

junction with DP4 bushes, even when the axial loads are low.

Fitting of Thrust Washers


DP4 thrust washers should be located in a recess as shown in Fig. 35. For the recess diameter the tolerance class [D10] is recommended. The recess depth is given in the product tables, page 40 and following.

If a recess is not possible one of the following methods may be used:

- · Two dowel pins
- Two screws
- Adhesive
- Soldering (temperature <320 °C).

Important Note

- Ensure the washer ID does not touch the shaft after assembly
- Ensure that the washer is mounted with the steel backing to the housing
- Dowels pins should be recessed 0.25 mm below the bearing surface
- Screws should be countersunk 0.25 mm below the bearing surface
- DP4 must not be heated above 320 °C
- Contact adhesive manufacturers for guidance selection of suitable adhesives
- Protect the bearing surface to prevent contact with adhesive.

Tests with thrust washers have demonstrated that for optimum dry wear performance at specific loads in excess of 35 N/mm², four wear debris removal grooves should be machined in the bearing surface as shown in Fig. 36.

Grooves in bushes have not been found to be beneficial in this respect.

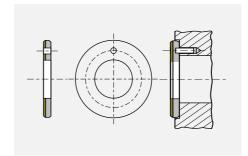


Fig. 35: Installation of Thrust-Washer

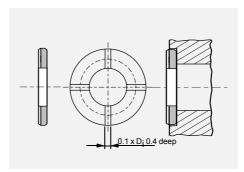


Fig. 36: Debris removal Grooves

Slideways

DP4 strip material for use as slideway bearings should be installed using one of the following methods:

- Countersunk screws
- Adhesives
- Mechanical location as shown in Fig. 37.

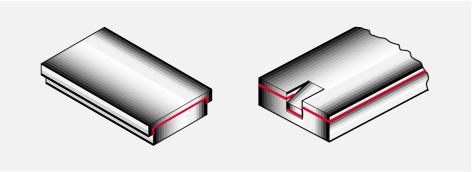


Fig. 37: Mechanical location of DP4 slideplates

9 Modification

9.1 Cutting and Machining

The modification of DP4 bearing components requires no special procedures. In general it is more satisfactory to perform machining or drilling operations from the PTFE side in order to avoid burrs. When cutting is done from the steel side, the

minimum cutting pressure should be used and care taken to ensure that any steel or bronze particles protruding into the remaining bearing material, and all burrs, are removed

Drilling Oil Holes

Bushes should be adequately supported during the drilling operation to ensure that

no distortion is caused by the drilling pressure

Cutting Strip Material

DP4 strip material may be cut to size by any one of the following methods.

Care must be taken to protect the bearing surface from damage and to ensure that no deformation of the strip occurs:

 Using side and face cutter, or slitting saw, with the strip held flat and securely on a horizontal milling machine.

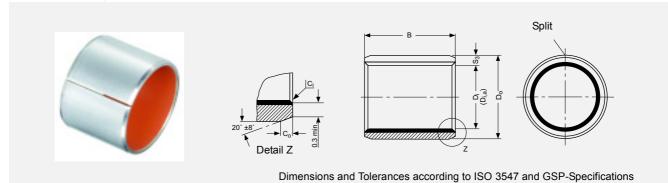
- · Cropping
- Guillotine (For widths less than 90 mm only)
- · Water-jet cutting
- · Laser cutting (see Health Warning).

9.2 Electroplating

DP4 Components

In order to provide some protection in mildly corrosive environments the steel back and end faces of standard range DP4 bearings are tin flashed.

DP4 can be electroplated with most of the conventional electroplating metals including the following:


- zinc ISO 2081
- nickel ISO 1456
- hard chromium ISO 1456.

For the harder materials if the specified plating thickness exceeds approximately 5 μ m then the housing diameter should be increased by twice the plating thickness in order to maintain the correct assembled bearing bore size.

Where electrolytic attack is possible tests should be conducted to ensure that all the materials in the bearing environment are mutually compatible.

10 Standard Products

10.1 DP4 Cylindrical bushes

Part No.		ninal ize	Wall thickness S ₃	Length B		Shaft-ø D _J [h6, f7, h8]		lousing-ø _H [H6, H7]	Bush i-ø D _{i,a} when ass. in H7 housing	Clearance C _D	
	D _i	D _o	max. min.	max. min.		max. min.	max. min.		max. min.	max. min.	
0203 DP4	2	3,5	0.745 0.725	3.25		2.000 1.994		3.508 3.500	+2.058 +2.010	0.064 0.010	
0303 DP4	3	4,5		2.75 6.25		3.000		4.508	+ 3.048	0.054	
0306 DP4		.,0	0.750	5.75	h6	2.994	H 6	4.500	+ 3.000	0.000	
0404 DP4	4	5,5	0.730	4.25 3.75		4.000		5.508	+4.048	0.056	
0410 DP4	•	0,0		10.25 9.75		3.992		5.500	+4.000	0.000	
0505 DP4				5.25 4.75							
0508 DP4	5	7		8.25 7.75		4.990 4.978		7.015 7.000	5.055 4.990		
0510 DP4			10.25 9.75						0.077		
0606 DP4					6.25 5.75			ĺ			0.000
0608 DP4	6	8		8.25 7.75		5.990 5.978		8.015 8.000	6.055 5.990		
0610 DP4				10.25 9.75		0.070		0.000	0.990		
0710 DP4	7	9		10.25 9.75		6.987 6.972		9.015 9.000	7.055 6.990		
0806 DP4			4 005	6.25		0.972		9.000	0.990		
0808 DP4			1.005 0.980	5.75 8.25	f7		H 7			0.083	
0810 DP4	8	10		7.75 10.25		7.987 7.972		10.015 10.000	8.055 7.990	0.003	
0812 DP4				9.75 12.25							
1008 DP4				11.75 8.25							
				7.75 10.25							
1010 DP4				9.75 12.25		9.987 9.972		12.018 12.000	10.058	0.086	
1012 DP4	10	12		11.75 15.25					9.990	0.086	
1015 DP4				14.75							
1020 DP4				20.25 19.75							

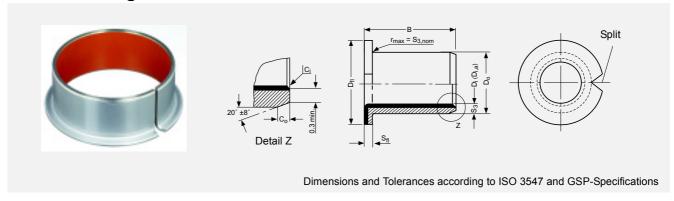
10 Standard Products

Part No.		ninal ze	Wall thickness S ₃	Length B	DJ	Shaft-ø [h6, f7, h8]		lousing-ø _H [H6, H7]	Bush i-ø D _{i,a} when ass. in H7 housing	Clearance C _D
	D _i	D _o	max. min.	max.		max. min.		max.	max. min.	max. min.
1208 DP4			IIIII.	min. 8.25	H	111111.		min.	IIIII.	111111.
1210 DP4				7.75 10.25						
1212 DP4				9.75 12.25						
1215 DP4	12	14		11.75 15.25		11.984 11.966		14.018 14.000	12.058 11.990	
1210 DF 4				14.75 20.25						
				19.75 25.25						
1225 DP4				24.75 10.25						
1310 DP4	13	15		9.75 20.25		12.984 12.966		15.018 15.000	13.058 12.990	
1320 DP4				19.75 5.25		. = . 0 0 0		13.000	1000	
1405 DP4				4.75						
1410 DP4				10.25 9.75				16.018 16.000	14.058	0.092 0.006
1412 DP4	14	16		12.25 11.75		13.984				
1415 DP4				15.25 14.75		13.966			13.990	
1420 DP4				20.25 19.75						
1425 DP4				25.25 24.75						
1510 DP4			1.005 0.980	10.25 9.75	f7		H 7			
1512 DP4		17		12.25 11.75		14.984 14.966		17.018 17.000		
1515 DP4	15			15.25 14.75					15.058 14.990	
1520 DP4				20.25 19.75						
1525 DP4				25.25 24.75						
1610 DP4				10.25						
1612 DP4				9.75 12.25						
1615 DP4	16	18		11.75 15.25		15.984		18.018	16.058	
1620 DP4		.0		14.75 20.25		15.966		18.000	15.990	
1625 DP4				19.75 25.25						
	17	19		24.75 20.25		16.984		19.021	17.061	
1720 DP4	17	19		19.75 10.25		16.966		19.000	16.990	
1810 DP4				9.75 15.25						0.095
1815 DP4	18	20		14.75 20.25		17.984 17.966		20.021 20.000	18.061 17.990	0.006
1820 DP4				19.75				20.000	17.990	
1825 DP4				25.25 24.75						

Part No.		ninal ize	Wall thickness S ₃	Length B		Shaft-ø [h6, f7, h8]		ousing-ø _H [H6, H7]	Bush i-ø D _{i,a} when ass. in H7 housing	Clearance C _D	
	Di	D _o	max. min.	max.		max.		max.	max. min.	max. min.	
2010 DP4				min. 10.25		min.		min.	111111.		
2015 DP4				9.75 15.25							
2020 DP4	20	23		14.75 20.25		19.980		23.021	20.071		
2025 DP4				19.75 25.25		19.959		23.000	19.990		
2030 DP4				24.75 30.25							
2215 DP4				29.75 15.25							
2220 DP4				14.75 20.25							
2225 DP4	22	25		19.75 25.25		21.980 21.959	25.021 25.000	22.071 21.990			
2230 DP4				24.75 30.25							
2415 DP4			1.505 29.75 1.475 15.25			0.112 0.010					
2420 DP4	24			14.75 20.25						0.010	
2425 DP4		27		19.75 25.25		23.980 23.959		27.021 27.000	24.071 23.990		
2430 DP4				24.75 30.25							
2515 DP4				29.75 15.25							
				14.75 20.25							
2520 DP4	25	25	20		19.75 25.25		24.980	Н	28.021	25.071	
2525 DP4		28		24.75 30.25	f7	24.959	7	28.000	24.990		
2530 DP4				29.75 50.25							
2550 DP4				49.75 15.25							
2815 DP4				14.75 20.25							
2820 DP4	28	32		19.75 25.25		27.980 27.959		32.025 32.000	28.085 27.990		
2825 DP4				24.75 30.25		27.000		02.000	21.000		
2830 DP4				29.75 10.25							
3010 DP4				9.75 15.25						0.126 0.010	
3015 DP4			2 005	14.75 20.25						0.010	
3020 DP4	30	34	2.005 1.970	19.75		29.980 29.959		34.025 34.000	30.085 29.990		
3025 DP4				25.25 24.75		29.909		34.000	29.990		
3030 DP4				30.25 29.75							
3040 DP4				40.25 39.75							
3220 DP4				20.25 19.75							
3230 DP4	32	32	36		30.25 29.75		31.975 31.950		36.025 36.000	32.085 31.990	0.135 0.015
3240 DP4				40.25 39.75							

10 Standard Products

Part No.		ninal ze	Wall thickness S ₃	Length B	DJ	Shaft-ø [h6, f7, h8]		lousing-ø _H [H6, H7]	Bush i-ø D _{i,a} when ass. in H7 housing	Clearance C _D		
	D _i	D _o	max. min.	max. min.		max. min.		max. min.	max. min.	max. min.		
3520 DP4				20.25 19.75								
3530 DP4				30.25 29.75								
3535 DP4	35	39		35.25 34.75		34.975 34.950		39.025 39.000	35.085 34.990			
3540 DP4				40.25 39.75								
3550 DP4			2.005	50.25 49.75						0.135		
3720 DP4	37	41	1.970	20.25 19.75		36.975 36.950		41.025 41.000	37.085 36.990	0.015		
4020 DP4				20.25 19.75								
4030 DP4				30.25 29.75		39.975		44.025	40.085			
4040 DP4	40	44		40.25 39.75		39.950		44.000	39.990			
4050 DP4				50.25 49.75								
4520 DP4				20.25 19.75								
4530 DP4	45			30.25 29.75		44.975 44.950		50.025 50.000				
4540 DP4		50		40.25 39.75					45.105 44.990	0.155 0.015		
4545 DP4				45.25 44.75								
4550 DP4				50.25 49.75								
5020 DP4				20.25 19.75								
5030 DP4	50					30.25 29.75	f7		H 7			
5040 DP4		55		40.25 39.75		49.975 49.950		55.030 55.000	50.110 49.990	0.160 0.015		
5050 DP4				50.25 49.75								
5060 DP4				60.25 59.75								
5520 DP4				20.25 19.75								
5525 DP4			2.505 2.460	25.25 24.75								
5530 DP4				30.25 29.75								
5540 DP4	55	60		40.25 39.75		54.970 54.940		60.030 60.000	55.110 54.990			
5550 DP4				50.25 49.75								
5555 DP4				55.25 54.75								
5560 DP4				60.25 59.75						0.170 0.020		
6020 DP4				20.25 19.75								
6030 DP4				30.25 29.75								
6040 DP4	60	GE.		40.25 39.75		59.970		65.030	60.110			
6050 DP4	60	65		50.25 49.75		59.940		65.000	59.990			
6060 DP4				60.25 59.75								
6070 DP4				70.25 69.75								


Part No.		ninal ze	Wall thickness S ₃	Length B	DJ	Shaft-ø [h6, f7, h8]		lousing-ø _H [H6, H7]	Bush i-Ø D _{i,a} when ass. in H7 housing	Clearance C _D					
	D _i	D _o	max. min.	max. min.		max. min.		max. min.	max. min.	max. min.					
6530 DP4				30.25 29.75											
6550 DP4	65	70		50.25 49.75		64.970 64.940		70.030 70.000	65.110 64.990						
6570 DP4				70.25 69.75		01.010		70.000							
7040 DP4			2.505 2.460	40.25 39.75	f7					0.170 0.020					
7050 DP4	70	75		50.25 49.75		69.970 69.940		75.030 75.000	70.110 69.990						
7070 DP4				70.25 69.75											
7580 DP4	75	80		80.25 79.75		74.970 74.940		80.030 80.000	75.110 74.990						
8060 DP4				60.50 59.50		80.000	,	85.035	80.155	0.201 0.020					
80100 DP4	80	85		100.50 99.50		79.954		85.000	80.020						
8530 DP4				30.50 29.50											
8560 DP4	85	90		60.50 59.50		85.000 84.946		90.035 90.000	85.155 85.020						
85100 DP4				100.50 99.50											
9060 DP4	00	0.5		60.50 59.50			H 7	95.035	90.155						
90100 DP4	90	95		100.50 99.50				95.000	90.020						
9560 DP4	05	100	400	100	400	100	400	400		60.50 59.50		95.000	100.035	95.155	
95100 DP4	95	100	2.490	100.50 99.50	h 0	94.946		100.000	95.020						
10050 DP4			2.440	50.50 49.50	h8					0.209					
10060 DP4	100	105		60.50 59.50		100.000 99.946		105.035 105.000	100.155 100.020	0.020					
100115 DP4				115.50 114.50											
10560 DP4	105	110		60.50 59.50		105.000		110.035	105.155						
105115 DP4	105	110		115.50 114.50		104.946		110.000	105.020						
11060 DP4	140	145		60.50 59.50		110.000		115.035	110.155						
110115 DP4	110	115		115.50 114.50		109.946		115.000	110.020						
11550 DP4	445	400		50.50 49.50		115.000		120.035	115.155						
11570 DP4	115	120		70.50 69.50		114.946		120.000	115.020						

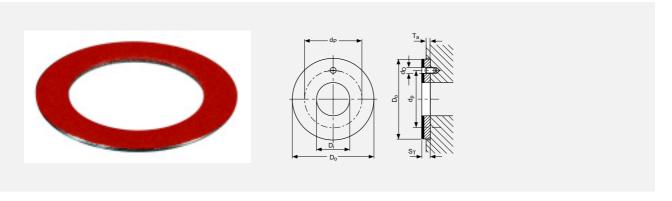
Outside C_o and Inside C_i chamfers

Wall thick-	Co	C (b)		
ness S ₃	machined	rolled	C _i (b)	
0.75	0.5 ± 0.3	0.5 ± 0.3	-0.1 to -0.4	
1	0.6 ± 0.4	0.6 ± 0.4	-0.1 to -0.5	
1.5	0.6 ± 0.4	0.6 ± 0.4	-0.1 to -0.7	

S_3	Co	C _i (b)		
-3	machined	rolled	-1(-,	
2	1.2 ± 0.4	1.0 ± 0.4	-0.1 to -0.7	
2.5	1.8 ± 0.6	1.2 ± 0.4	-0.2 to -1.0	

10.2DP4 Flanged bushes

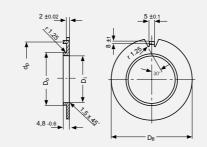
Part No.	Non si		Wall thickness S ₃	Flange thickness S _{fl}	Flange-ø D _{fl}	Length B	Shaft-ø D _J [f7]	Housing-ø D _H [H7]	Ass. Inside-ø D _{i,a}	Clearance C _D
	D _i	D _o	max. min.	max. min.	max. min.	max. min.	max. min.	max. min.	max. min.	max. min.
BB 0304 DP4	3	4,5	0.750	0.80	7.5 6.5	4,25 3,75	3.000 2.994	4.508 4.500	3.044 3.004	0.054 0.000
BB 0404 DP4	4	5,5	0.730	0.70	9.5 8.5	4,25 3,75	4.000 3.992	5.508 5.500	4.044 4.004	0.056 0.000
BB 0505 DP4	5	7			10.5 9.5	5,25 4,75	4.990 4.978	7.015 7.000	5.055 4.990	
BB 0604 DP4	6	8			12.5	4.25 3.75	5.990	8.015	6.055	0.077 0.000
BB 0608 DP4	0	0			11.5	8.25 7.75	5.978	8.000	5.990	
BB 0806 DP4						6.25 5.75				
BB 0808 DP4	8	10			15.5 14.5	8.25 7.75	7.987 7.972	10.015 10.000	8.055 7.990	0.083 0.003
BB 0810 DP4						10.25 9.75				
BB 1007 DP4						7.25 6.75				
BB 1009 DP4	10	12			18.5 17.5	9.25 8.75	9.987 9.972	12.018 12.000	10.058 9.990	0.086 0.003
BB 1012 DP4	10	12				12.25 11.75				
BB 1017 DP4						17.25 16.75				
BB 1207 DP4			1.005 0.980	1.005 0.800		7.25 6.75				
BB 1209 DP4	12	14			20.5	9.25 8.75	11.984	14.018	12.058	
BB 1212 DP4	12	1-7			19.5	12.25 11.75	11.966	14.000	11.990	
BB 1217 DP4						17.25 16.75				
BB 1412 DP4	14	16			22.5	12.25 11.75	13.984	16.018	14.058	
BB 1417 DP4	14	10			21.5	17.25 16.75	13.966	16.000	13.990	0.092 0.006
BB 1509 DP4						9.25 8.75				
BB 1512 DP4	15	17			23.5 22.5	12.25 11.75	14.984 14.966	17.018 17.000	15.058 14.990	
BB 1517 DP4						17.25 16.75				
BB 1612 DP4	16	10			24.5	12.25 11.75	15.984	18.018	16.058	
BB 1617 DP4	16	18			23.5	17.25 16.75	15.966	18.000	15.990	


Part No.		ninal ze	Wall thickness S ₃	Flange thickness S _{fl}	Flange-ø D _{fl}	Length B	Shaft-ø D _J [f7]	Housing-ø D _H [H7]	Ass. Inside-ø D _{i,a}	Clearance C _D																		
	D _i	D _o	max. min.	max. min.	max. min.	max. min.	max. min.	max. min.	max. min.	max. min.																		
BB 1812 DP4						12.25 11.75																						
BB 1817 DP4	18	20	1.005 0.980	1.000 0.800	26.5 25.5	17.25 16.75	17.984 17.966	20.021 20.000	18.061 17.990	0.095 0.006																		
BB 1822 DP4						22.25 21.75																						
BB 2012 DP4						11.75 11.25																						
BB 2017 DP4	20	23			30.5 29.5	16.75 16.25	19.980 19.959	23.021 23.000	20.071 19.990																			
BB 2022 DP4			1.505	1.600	1.600		21.75 21.25				0.112																	
BB 2512 DP4			1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475 1.400		11.75 11.25				0.010												
BB 2517 DP4	25	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28			35.5 34.5	16.75 16.25	24.980 24.959	28.021 28.000	25.071 24.990	
BB 2522 DP4						21.75 21.25																						
BB 3016 DP4	30	34			42.5	16.25 15.75	29.980	34.025	30.085	0.126																		
BB 3026 DP4	30	34			41.5	26.25 25.75	29.959	34.000	29.990	0.010																		
BB 3516 DP4	25	20	2.005	2.100	47.5	16.25 15.75	34.975	39.025	35.085																			
BB 3526 DP4	35 39	39	1.970	1.800	46.5	26.25 25.75	34.950	39.000	34.990	0.135																		
BB 4016 DP4	40	44					53.5	16.25 15.75	39.975	44.025	40.085	0.015																
BB 4026 DP4					52.5	26.25 25.75	39.950	44.000	39.990																			
BB 4516 DP4	45	50	2.505	2.600	58.5	16.25 15.75	44.975	50.025	45.105	0.155																		
BB 4526 DP4	45	50	2.460	2.400	57.5	26.25 25.75	44.950	50.000	44.990	0.015																		

Outside \mathbf{C}_{o} and Inside \mathbf{C}_{i} chamfers

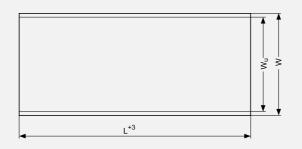
Wall thick-	c _o	C _i (b)	
ness S ₃	machined	rolled	C _i (b)
0.75	0.5 ± 0.3	0.5 ± 0.3	-0.1 to -0.4
1	0.6 ± 0.4	0.6 ± 0.4	-0.1 to -0.5
1.5	0.6 ± 0.4	0.6 ± 0.4	-0.1 to -0.7

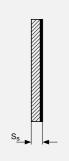
S ₃	Co	C _i (b)		
-3	machined	rolled	-1(~)	
2	1.2 ± 0.4	1.0 ± 0.4	-0.1 to -0.7	
2.5	1.8 ± 0.6	1.2 ± 0.4	-0.2 to -1.0	


10.3DP4 Thrust Washers

D. d. No.	Inside-ø D _i	Outside-ø D _o	Thickness S _T	Locating Hole-ø	Pitch Circle-ø d _P	Recess depth
Part No.	max. min.	max. min.	max. min.	max. min.	max. min.	max. min.
WC 08 DP4	10.25 10.00	20.00 19.75		No Hole	No Hole	
WC 10 DP4	12.25 12.00	24.00 23.75		1.875 1.625	18.12 17.88	
WC 12 DP4	14.25 14.00	26.00 25.75			20.12 19.88	
WC 14 DP4	16.25 16.00	30.00 29.75		2.375 2.125	22.12 21.88	
WC 16 DP4	18.25 18.00	32.00 31.75			25.12 24.88	1.20 0.95
WC 18 DP4	20.25 20.00	36.00 35.75		3.375 3.125	28.12 27.88	
WC 20 DP4	22.25 22.00	38.00 37.75	1.50 1.45		30.12 29.88	
WC 22 DP4	24.25 24.00	42.00 41.75			33.12 32.88	
WC 24 DP4	26.25 26.00	44.00 43.75			35.12 34.88	
WC 25 DP4	28.25 28.00	48.00 47.75			38.12 37.88	
WC 30 DP4	32.25 32.00	54.00 53.75			43.12 42.88	
WC 35 DP4	38.25 38.00	62.00 61.75			50.12 49.88	
WC 40 DP4	42.25 42.00	66.00 65.75		4.375 4.125	54.12 53.88	
WC 45 DP4	48.25 48.00	74.00 73.75			61.12 60.88	
WC 50 DP4	52.25 52.00	78.00 77.75	2.00 1.95		65.12 64.88	1.70 1.45
WC 60 DP4	62.25 62.00	90.00 89.75			76.12 75.88	

10.4DP4 Flanged Thrust Washers




Part No.	Inside-ø D _i	Flange-ø D _{fl}	Outside-ø D _o	Locating Hole-ø d _P	Thickness S _T
rait No.	max. min.	max. min.	max. min.	max. min.	max. min.
BS 40 DP4	40.70 40.20	44.00 43.90	75.0 74.5	65.0 64.5	
BS 50 DP4	51.50 51.00	55.00 54.88	85.0 84.5	75.0 74.5	
BS 60 DP4	61.50 61.00	65.00 64.88	95.0 94.5	85.0 84.5	
BS 70 DP4	71.50 71.00	75.00 74.88	110.0 109.5	100.0 99.5	2.02 1.98
BS 80 DP4	81.50 81.00	85.00 84.86	120.0 119.5	110.0 109.5	
BS 90 DP4	91.50 91.00	95.00 94.86	130.0 129.5	120.0 119.5	
BS 100 DP4	101.50 101.00	105.00 104.86	140.0 139.5	130.0 129.5	

All dimensions in mm

10.5DP4 Strip

Part No.	Length	Width	Usable Width	Thickness S _S
Tart No.	L	W	W _u	max. min.
S 07090 DP4		100	90	0.740 0.700
S 10200 DP4	500	500		1.010 0.970
S 15240 DP4			215	1.510 1.470
S 20240 DP4		221	215	1.980 1.940
S 25240 DP4				2.460 2.420

11 Test Methods

11.1 Measurement of Wrapped Bushes

It is not possible to accurately measure the external and internal diameters of a wrapped bush in the free condition. In its free state a wrapped bush will not be perfectly cylindrical and the butt joint may be open. When correctly installed in a housing the butt joint will be tightly closed and the bush will conform to the housing. For this reason the external diame-

ter and internal diameter of a wrapped bush can only be checked with special gauges and test equipment.

The checking methods are defined in ISO 3547 Part 1 and 2 and ISO 12306 respectively.

Test A of ISO 3547 Part 2

Checking the external diameter in a test machine with checking blocks and adjusting mandrel.

Test A of ISO 3547 Part 2 on 2015 DP4				
Test housing and mandrel d _{ch,1}	23.062 mm			
Test load F _{ch}	4500 N			
Limits for Δz	0 and -0.065 mm			
Bush outside diameter D _o	23.035 to 23.075 mm			

Table 18: Test A of ISO 3547 Part 2

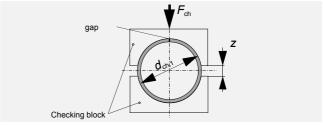


Fig. 38: Test A, Data for drawing

Test B (alternatively to Test A)

Check external diameter with GO and NOGO ring gauges.

Test C

Checking the internal diameter of a bush pressed into a ring gauge, which nominal diameter corresponds to the dimension specified in table 5 of ISO 3547 Part 1.

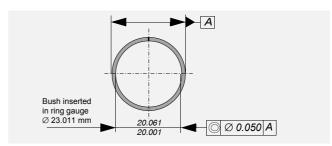


Fig. 39: Test C, Data for drawing (example $D_i = 20 \text{ mm}$)

Measurement of Wall Thickness (alternatively to Test C)

The wall thickness is measured at one, two or three positions axially according to the bearing dimensions.

B [mm]	X [mm]	measurement position
≤15	B/2	1
>15 ≤50	4	2
>50	6	2

Table 19: Measurement position for wall thickness

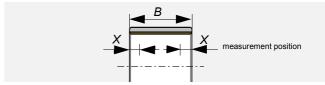


Fig. 40: Wall thickness measurement position

Test D

Check external diameter by precision measuring tape.

Glacier Garlock Bearings warrants that products described in this brochure are free from defects in workmanship and material but unless expressly agreed in writing Glacier Garlock Bearings gives no warranty that these products are suitable for any particular purpose of for use under any specific conditions notwithstanding that such purpose would appear to be covered by this publication. Glacier Garlock Bearings accepts no liability for any loss, damage, or expense whatsoever arising directly or indirectly from use of its products. All business undertaken by Glacier Garlock Bearings is subject to its standard Conditions of Sale, copies of which are available upon request. Glacier Garlock Bearings products are subject to continual development and Glacier Garlock Bearings reserves the right to make changes in the specification and design of its products without prior notice.

GLACIERTM is a Trademark of the EnPro Industries Inc., USA.

DP4TM is a Trademark of the EnPro Industries Inc., USA.

Health Hazard - Warning

Fabrication

At temperatures up to 250 °C the polytetrafluroethylene (PTFE) present in the lining material is completely inert so that even on the rare occasions in which DP4 bushes are drilled, or sized, after assembly there is no danger in boring or burnishing.

At higher temperatures however, small quantities of toxic fumes can be produced and the direct inhalation of these can cause an influenza type of illness which may not appear for some hours but which subsides without after-effects in 24-48 hours.

Such fumes can arise from PTFE particles picked up on the end of a cigarette. Therefore smoking should be prohibited where DP4 is being machined.