

# **Hi-eX** Marginally lubricated



Designer's Handbook

#### Quality

All the products described in this handbook are manufactured under DIN ISO 9001/2 or QS 9000 approved quality management systems.



T

# Formula Symbols and Designations

| Formula<br>Symbol  | Unit  | Designation                          |
|--------------------|-------|--------------------------------------|
| a <sub>B</sub>     | -     | Bearing size factor                  |
| a <sub>E</sub>     | -     | High load factor                     |
| a <sub>Q</sub>     | -     | Speed/Load factor                    |
| a <sub>s</sub>     | -     | Surface finish factor                |
| a <sub>T</sub>     | -     | Temperature application factor       |
| В                  | mm    | Nominal bush width                   |
| с                  | 1/min | Dynamic load frequency               |
| CD                 | mm    | Installed diametral clearance        |
| C <sub>Dm</sub>    | mm    | Diametral clearance machined         |
| C <sub>T</sub>     | -     | Total number of dynamic load cycles  |
| Ci                 | mm    | ID chamfer length                    |
| C <sub>o</sub>     | mm    | OD chamfer length                    |
| D <sub>H</sub>     | mm    | Housing Diameter                     |
| Di                 | mm    | Nominal bush/thrust washer ID        |
| D <sub>i,a</sub>   | mm    | Bush ID when assembled in housing    |
| D <sub>i,a,m</sub> | mm    | Bush ID assembled and machined       |
| DJ                 | mm    | Shaft diameter                       |
| Do                 | mm    | Nominal bush/thrust washer OD        |
| d <sub>D</sub>     | mm    | Dowel hole diameter                  |
| dL                 | mm    | Oil hole diameter                    |
| d <sub>P</sub>     | mm    | Pitch circle diameter for dowel hole |
| F                  | N     | Bearing load                         |
| F <sub>i</sub>     | N     | Insertion force                      |
| f                  | -     | friction                             |
| L                  | mm    | Strip length                         |
| L <sub>H</sub>     | h     | Bearing service life                 |
| L <sub>RG</sub>    | h     | Relubrication interval               |
| N                  | 1/min | Rotational speed                     |
| N <sub>osz</sub>   | 1/min | Oscillating movement frequency       |

| Formula<br>Symbol           | Unit                | Designation                                                 |
|-----------------------------|---------------------|-------------------------------------------------------------|
| p                           | N/mm <sup>2</sup>   | Specific load                                               |
| <b>p</b> <sub>lim</sub>     | N/mm <sup>2</sup>   | Specific load limit                                         |
| <b>p</b> <sub>sta,max</sub> | N/mm <sup>2</sup>   | Maximum static load                                         |
| <b>p</b> <sub>dyn,max</sub> | N/mm <sup>2</sup>   | Maximum dynamic load                                        |
| Q                           | -                   | Total number of cycles                                      |
| R                           | -                   | Number of lubrication intervals                             |
| R <sub>a</sub>              | μ <b>m</b>          | Surface roughness<br>(DIN 4768, ISO/DIN 4287/1)             |
| <b>S</b> <sub>3</sub>       | mm                  | Bush wall thickness                                         |
| S <sub>S</sub>              | mm                  | Strip thickness                                             |
| S <sub>T</sub>              | mm                  | Thrust washer thickness                                     |
| τ                           | °C                  | Temperature                                                 |
| T <sub>a</sub>              | mm                  | Depth of Housing Recess                                     |
| <b>T</b> <sub>amb</sub>     | °C                  | Ambient temperature                                         |
| T <sub>max</sub>            | °C                  | Maximum temperature                                         |
| T <sub>min</sub>            | °C                  | Minimum temperature                                         |
| U                           | m/s                 | Sliding speed                                               |
| u                           | -                   | speed factor                                                |
| W                           | mm                  | Strip width                                                 |
| <i>W</i> <sub>u</sub>       | mm                  | Maximum usable strip width                                  |
| α1                          | 1/10 <sup>6</sup> K | Coefficient of linear thermal expansion parallel to surface |
| α2                          | 1/10 <sup>6</sup> K | Coefficient of linear thermal expansion normal to surface   |
| σ <sub>c</sub>              | N/mm <sup>2</sup>   | Compressive Yield strength                                  |
| λ                           | W/mK                | Thermal conductivity                                        |
| φ                           | 0                   | Angular displacement                                        |
| η                           | Ns/mm <sup>2</sup>  | Dynamic Viscosity                                           |
| ZT                          | -                   | Total number of osscillating movements                      |

# Content

|     | Quality<br>Formula Symbols and                           |                       |
|-----|----------------------------------------------------------|-----------------------|
|     | Designations                                             | II                    |
| 1   | Introduction                                             | 4                     |
| 1.1 | Characteristics and Advantages                           | 4                     |
| 2   | Structure                                                | 4                     |
| 2.1 | Basic Forms                                              | 5                     |
| 3   | Properties                                               | 6                     |
| 3.1 | Physical Properties                                      | 6                     |
| 3.2 | Chemical Properties                                      | 6                     |
| 4   | Lubrication and Friction .                               | 7                     |
| 4.1 | Dry operation                                            | 7                     |
| 4.2 | Choice of Lubricant                                      | 7<br>7                |
|     | Grease                                                   | 7                     |
|     | Non lubricating fluids                                   | 7                     |
| 4.3 | Friction                                                 | 9                     |
| 4.4 | Lubricated Environments                                  | <b>9</b><br>9         |
| 4.5 | Characteristics of<br>Fluid Lubricated<br>Hi-eX Bearings | 10                    |
| 4.6 | Design Guidance for<br>Fluid Lubricated Applications     | 10                    |
| 4.7 |                                                          | <b>12</b><br>12       |
| 5   | Design Factors 1                                         | 3                     |
| 5.1 | Specific Load                                            | <b>13</b><br>13       |
| 5.2 | Continuous Rotation                                      | <b>14</b><br>14<br>14 |
| 5.3 | pU Factor                                                | 15                    |
| 5.4 |                                                          | <b>15</b><br>15       |
| 5.5 | Temperature                                              | 17                    |
| 5.6 | J                                                        | 17                    |
| 5.7 | Bearing Size                                             | 18                    |

| 5.8                                                                                     | Estimation of<br>Bearing Service Life                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                 |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 18<br>19                                                                                           |
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                 |
|                                                                                         | Oscillating Motion                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |
|                                                                                         | and Dynamic Loads                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                 |
| 5.9                                                                                     | Worked Examples                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                 |
| 6.1                                                                                     | Data for bearing design calculations                                                                                                                                                                                                                                                                                                                                                               | 21                                                                                                 |
| 7.1                                                                                     | Dimensions and Tolerances                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                 |
| 7.2                                                                                     | Tolerances for                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                 |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                 |
|                                                                                         | Fluid Lubrication                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                 |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                 |
| 7.3                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                 |
| 7.4                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                 |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                 |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                 |
|                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                  | 27<br>27                                                                                           |
|                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                  | 27                                                                                                 |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | 27                                                                                                 |
|                                                                                         | Fitting of Thrust Washers                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |
| 8                                                                                       | Fitting of Thrust Washers<br>Slideways                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                                 |
| <b>8</b><br>8.1                                                                         | Fitting of Thrust Washers         Slideways         Machining                                                                                                                                                                                                                                                                                                                                      | 27<br>28                                                                                           |
| •                                                                                       | Fitting of Thrust Washers         Slideways         Machining         Machining Practice                                                                                                                                                                                                                                                                                                           | 27<br>28<br><b>29</b>                                                                              |
| 8.1                                                                                     | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring                                                                                                                                                                                                                                                                                            | 27<br>28<br><b>29</b><br>29                                                                        |
| 8.1<br>8.2                                                                              | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming                                                                                                                                                                                                                                                                            | 27<br>28<br>29<br>29<br>29<br>29                                                                   |
| 8.1<br>8.2<br>8.3                                                                       | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching                                                                                                                                                                                                                                                          | 27<br>28<br>29<br>29<br>29<br>30                                                                   |
| 8.1<br>8.2<br>8.3<br>8.4                                                                | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching                                                                                                                                                                                                                                   | 27<br>28<br>29<br>29<br>29<br>30<br>30                                                             |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5                                                         | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components                                                                                                                                                                                                | 27<br>28<br>29<br>29<br>29<br>30<br>30<br>31                                                       |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6                                                  | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components                                                                                                                                                                                                | 27<br>28<br>29<br>29<br>30<br>30<br>31<br>31<br>31                                                 |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7                                           | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components         Drilling Oil Holes                                                                                                                                                                     | 27<br>28<br><b>29</b><br>29<br>30<br>30<br>31<br>31<br>31<br>31                                    |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8                                    | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components         Drilling Oil Holes         Cutting Strip Material         Hi-eX Components                                                                                                             | 27<br>28<br>29<br>29<br>30<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>32<br>32             |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>9</b>                        | Fitting of Thrust Washers         Slideways         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components         Drilling Oil Holes         Cutting Strip Material         Electroplating         Hi-eX Components         Mating Surfaces                                                                                | 27<br>28<br>29<br>29<br>30<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>32<br>32             |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>9                               | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Boring         Reaming         Broaching         Vibrobroaching         Modification of components         Drilling Oil Holes         Cutting Strip Material         Electroplating         Hi-eX Components         Mating Surfaces         Standard Products                     | 27<br>28<br>29<br>29<br>30<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>32<br>32             |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>9<br>10                         | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components         Drilling Oil Holes         Cutting Strip Material         Electroplating         Hi-eX Components         Mating Surfaces         Standard Products         I PM-HX cylindrical bushes | 27<br>28<br>29<br>29<br>30<br>30<br>31<br>31<br>31<br>31<br>31<br>32<br>32<br>32<br>33<br>33<br>33 |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>9<br>10<br>10.1<br>10.2         | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components         Drilling Oil Holes         Cutting Strip Material         Hi-eX Components         Mating Surfaces         Standard Products         2 MB-HX cylindrical bushes                        | 27<br>28<br>29<br>29<br>30<br>30<br>31<br>31<br>31<br>31<br>31<br>32<br>32<br>33<br>33<br>40       |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>9<br>10<br>10.1<br>10.2<br>10.3 | Fitting of Thrust Washers         Slideways         Machining         Machining Practice         Boring         Reaming         Broaching         Vibrobroaching         Modification of components         Drilling Oil Holes         Cutting Strip Material         Electroplating         Hi-eX Components         Mating Surfaces         Standard Products         I PM-HX cylindrical bushes | 27<br>28<br>29<br>29<br>30<br>30<br>31<br>31<br>31<br>31<br>31<br>32<br>32<br>33<br>33<br>40<br>45 |

# 1 Introduction

The purpose of this handbook is to provide comprehensive technical information on the characteristics of Hi-eX<sup>TM</sup> bearings. The information given, permits designers to establish the correct size of bearing required and the expected life and performance. Glacier Garlock Bearings Research and Development services are available to assist with unusual design problems.

Complete information on the range of HieX standard products is given together with details of other HieX products.

Glacier Garlock Bearings is continually refining and extending its experimental and theoretical knowledge and, therefore, when using this brochure it is always worthwhile to contact the Company should additional information be required.

Customers are advised to carry out prototype testing wherever possible.

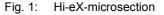
### 1.1 Characteristics and Advantages

- Hi-eX provides maintenance free operation
- Hi-eX has a high pU capability
- · Hi-eX exhibits low wear rate
- Seizure resistant
- Suitable for temperatures from -150 °C to +250 °C
- · High static and dynamic load capacity
- Hi-eX polymer bearing lining has good chemical resistance

# 2 Structure

Hi-eX is a composite bearing material developed specifically to operate with marginal lubrication and consists of three bonded layers: a steel backing strip and a sintered porous bronze matrix, impregnated and overlaid with a PEEK (polyether ether ketone) polymer bearing material, containing fillers including PTFE (polytertafluorethylene).

The steel backing provides mechanical strength and the bronze interlayer provides a strong mechanical bond for the lining. This construction promotes dimensional stability and improves thermal conductivity, thus reducing the temperature at the bearing surface.


For grease lubricated applications Hi-eX is manufactured with a polymer overlay thickness above the bronze sinter layer of 0.30 mm nominal, and the bearing surface is provided with a uniform pattern of indents. These serve as a reservoir for the grease • No water absorption and therefore dimensionally stable

- · Compact and light
- Suitable for rotating, oscillating, reciprocating and sliding movements
- Hi-eX bearings are prefinished and require no machining after assembly
- Suitable for use with low viscosity and low lubricant fluids.

and are designed to provide the optimum distribution of the lubricant over the bearing surface (e.g. PM2020HX).

For fluid lubricated applications where the bearing surface may be required to be machined subsequent to assembly, Hi-eX is manufactured with a polymer overlay thickness above the bronze sinter layer of 0.30 mm nominal, and the indent pattern omitted from the bearing surface (e.g. PM2020 HX (U)).





2

# 2.1 Basic Forms

Hi-eX is **not** available from stock and is manufactured only to order as follows:

#### **Standard Components**

These products are manufactured to International, National or Glacier Garlock Bearings standard designs.

- · Cylindrical Bushes
  - **PM** pre finished **metric** range, not machinable in situ, for use with stan-
- dard journals finished to h6-h8 limits. - **MB** machinable **metric** range, with an
- allowance for machining in situ. • Thrust Washers
- Strip Material







Fig. 2: Standard components

#### Non Standard Components

These products are manufactured to customers' requirements with or without Glacier Garlock Bearings recommendations, and include for example

- Half Bearings
- Flat Components
- Pressings Stampings
- · Modified Standard Components

Fig. 3: Non standard components

# **3** Properties

# 3.1 Physical Properties

|                          | Characteristic                            | Symbol               | Value Hi-eX      | Unit                | Comments                                             |
|--------------------------|-------------------------------------------|----------------------|------------------|---------------------|------------------------------------------------------|
| Physical                 | Thermal Conductivity                      | λ                    | 52               | W/mK                |                                                      |
| Properties               | Coefficient of linear thermal expansion : |                      |                  |                     |                                                      |
|                          | parallel to surface                       | α <sub>1</sub>       | 11               | 1/10 <sup>6</sup> K |                                                      |
|                          | normal to surface                         | α2                   | 29               | 1/10 <sup>6</sup> K |                                                      |
|                          | Maximum Operating Temperature             | 7 <sub>max</sub>     | 250              | °C                  |                                                      |
|                          | Minimum Operating Temperature             | <sup>7</sup> min     | -150             | °C                  |                                                      |
| Mechanical<br>Properties | Compressive Yield Strength                | σ <sub>c</sub>       | 380              | N/mm <sup>2</sup>   | measured on disc 5 mm dia-<br>meter x 2.45 mm thick. |
|                          | Maximum Load                              |                      |                  |                     |                                                      |
|                          | Static                                    | p <sub>sta,max</sub> | 140              | N/mm <sup>2</sup>   |                                                      |
|                          | Dynamic                                   | p <sub>dyn,max</sub> | 140              | N/mm <sup>2</sup>   |                                                      |
| Electrical<br>Properties | Volume resistivity of PEEK lining         |                      | >10 <sup>9</sup> | $\Omega$ cm         |                                                      |

Table 1: Physical, mechanical and electrical properties of Hi-eX

### 3.2 Chemical Properties

The following table provides an indication of the resistance of Hi-eX to various chemical media. It is recommended that the chemical resistance is confirmed by testing if possible.

|                      | Chemical                   | %  | °C | Rating |
|----------------------|----------------------------|----|----|--------|
| Strong Acids         | Hydrochloric Acid          | 5  | 20 | -      |
|                      | Nitric Acid                | 5  | 20 | -      |
|                      | Sulphuric Acid             | 5  | 20 | -      |
| Weak Acids           | Acetic Acid                | 5  | 20 | -      |
|                      | Formic Acid                | 5  | 20 | -      |
| Bases                | Ammonia                    | 10 | 20 | ο      |
|                      | Sodium Hydroxide           | 5  | 20 | ο      |
| Solvents             | Acetone                    |    | 20 | +      |
|                      | Carbon Tetrachloride       |    | 20 | +      |
| Lubricants and fuels | Paraffin                   |    | 20 | +      |
|                      | Gasolene                   |    | 20 | +      |
|                      | Kerosene                   |    | 20 | +      |
|                      | Diesel fuel                |    | 20 | +      |
|                      | Mineral Oil                |    | 70 | +      |
|                      | HFA-ISO46 High Water fluid |    | 70 | +      |
|                      | HFC-Water-Glycol           |    | 70 | +      |
|                      | HFD-Phosphate Ester        |    | 70 | +      |
|                      | Water                      |    | 20 | ο      |
|                      | Sea Water                  |    | 20 | -      |

Table 2: Chemical resistance of Hi-eX

| - | + | Corrosion damage is unlikely to occur.                                                                                                                                                       |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( | 0 | Acceptable:<br>Some corrosion damage may<br>occur but this will not be suf-<br>ficient to impair either the<br>structural integrity or the tribo-<br>logical performance of the<br>material. |
|   | - | Unsatisfactory:<br>Corrosion damage will occur<br>and is likely to affect either the<br>structural integrity and/or the<br>tribological performance of the<br>material.                      |

Satisfactory:

# 4 Lubrication and Friction

# 4.1 Dry operation

Hi-eX will operate satisfactorily without lubrication under light duty running conditions at  $\overline{p}U$  factors below 0.01 N/mm² x m/s and

# 4.2 Choice of Lubricant

Hi-eX will generally be lubricated, the choice of lubricant depending upon:

sliding speeds below 2.5 m/s. The wear performance should be confirmed by testing if possible.

- pU and sliding speed
- the stability of the lubricant under the operating conditions.

#### Grease

The performance ratings of different types of grease are indicated in Table 3. Greases containing EP additives or significant additions of graphite or  $MoS_2$  are not generally recommended for use with Hi-eX.

Hi-eX is able to withstand environmental temperatures beyond those generally suitable for grease lubrication and the performance is therefore likely to be limited by

#### Oil

Hi-eX is recommended for use with oil lubrication. Hi-eX is compatible with mineral oils up to 150 °C and is resistant to the oxidation products which may occur with mineral oils at temperatures above 115 °C.

#### Non lubricating fluids

Hi-eX has been found to perform satisfactorily with low viscosity and non lubricating fluids such as polyethylene glycol and polyglycol lubricants, water-oil emulsion, shock-absorber oils, kerosene and water.

In general, the fluid will be acceptable if it does not chemically attack the PEEK lining or the porous bronze interlayer. Chemical resistance data are given in Table 2.

Where there is doubt about the suitability of a fluid, a simple test is to submerge a

the lubricant and not by the bearing material. For environmental temperatures above 80°C suitability of the grease should be established by test and a silicone oil base or high temperature grease is recommended. For applications above 150 °C  $\overline{pU}$  values should be limited to below 1.0 N/mm<sup>2</sup> x m/s and re-lubrication intervals should not exceed 500 hours.

Degradation of oils is likely to occur following extended exposure to high temperatures and synthetic lubricants are recommended under these circumstances.

sample of Hi-eX material in the fluid for two to three weeks at 15-20 °C above the operating temperature. The following will usually indicate that the fluid is not suitable for use with Hi-eX.

- A significant change in the thickness of the Hi-eX material,
- A visible change in the bearing surface from polished to matt.
- A visible change in the microstructure of the bronze interlayer

# 4 Lubrication and Friction

| +  | Recommended        |
|----|--------------------|
| 0  | Satisfactory       |
| -  | Not recommended    |
| NA | Data not available |

| Manufacturer | Grade             |                   | Туре                 |        |  |
|--------------|-------------------|-------------------|----------------------|--------|--|
| Manulacturer | Grade             | Oil               | Thickener            | Rating |  |
| BP           | Energrease LS2    | Mineral           | Lithium Soap         | +      |  |
|              | Energrease LT2    | Mineral           | Lithium Soap         | +      |  |
|              | Energrease FGL    | Mineral           | Non Soap             | 0      |  |
|              | Energrease GSF    | Synthetic         | NA                   | 0      |  |
| Century      | Lacerta ASD       | Mineral           | Lithium/Polymer      | 0      |  |
|              | Lacerta CL2X      | Mineral           | Calcium              | -      |  |
| Dow Corning  | Molykote 55M      | Silicone          | Lithium Soap         | 0      |  |
|              | Molykote PG65     | PAO               | Lithium Soap         | +      |  |
|              | Molykote PG75     | Synthetic/Mineral | Lithium Soap         | 0      |  |
|              | Molykote PG602    | Mineral           | Lithium Soap         | 0      |  |
| Elf          | Rolexa.1          | Mineral           | Lithium Soap         | +      |  |
|              | Rolexa.2          | Mineral           | Lithium Soap         | 0      |  |
|              | Epexelf.2         | Mineral           | Lithium/Calcium Soap | -      |  |
| Esso         | Andok C           | Mineral           | Sodium Soap          | ο      |  |
|              | Andok 260         | Mineral           | Sodium Soap          | 0      |  |
|              | Cazar K           | Mineral           | Calcium Soap         | -      |  |
| Mobil        | Mobilplex 47      | Mineral           | Calcium Soap         | -      |  |
|              | Mobiltemp 1       | Mineral           | Non Soap             | ο      |  |
| Rocol        | BG622             | White Mineral     | Calcium Soap         | 0      |  |
|              | Sapphire          | Mineral           | Lithium Complex      | -      |  |
|              | White Food Grease | White Oil         | Clay                 | -      |  |
| Shell        | Albida R2         | Mineral           | Lithium Complex      | +      |  |
|              | Axinus S2         | Mineral           | Lithium              | 0      |  |
|              | Darina R2         | Mineral           | Inorganic Non Soap   | +      |  |
|              | Stamina U2        | Mineral           | Polyurea             | -      |  |
|              | Tivela A          | Synthetic         | NA                   | ο      |  |
| Total        | Aerogrease        | Synthetic         | NA                   | +      |  |
|              | Multis EP2        | NA                | Lithium              | +      |  |
|              |                   |                   |                      |        |  |

Table 3: Performance of greases

# 4.3 Friction

The coefficient of friction of lubricated Hi-eX depends upon the actual operating conditions as indicated in section 4.4.

# 4.4 Lubricated Environments

The following sections describe the basics of lubrication and provide guidance on the

#### Lubrication

There are three modes of lubricated bearing operation which relate to the thickness of the developed lubricant film between the bearing and the mating surface.

- - · Lubricant Viscosity and Flow

#### Hydrodynamic lubrication

Characterised by:

(4.4.1)

- · Complete separation of the shaft from the bearing by the lubricant film
- · Very low friction and no wear of the bearing or shaft since there is no contact
- Coefficients of friction of 0.001 to 0.01

Hydrodynamic conditions occur when

· Combination of hydrodynamic

· Part of the load is carried by localised areas of self pressurised lubricant and the remainder supported by boundary

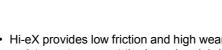
· Friction and wear depend upon the hydrodynamic

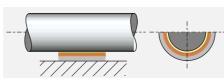
**Mixed film lubrication** 

boundary lubrication.

of

Characterised by:


lubrication.


developed.

degree

 $\overline{p} \leq \frac{U \cdot \eta}{7.5} \cdot \frac{B}{D_i}$ 

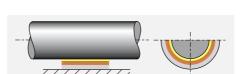
#### · Hi-eX provides low friction and high wear resistance to support the boundary lubricated element of the load.





Mixed film lubrication Fig. 5:

Where frictional characteristics are critical


to a design they should be established by

application of Hi-eX in such environments.

These three modes of operation depend upon:

- · Bearing dimensions
- Clearance
- · Load and Speed

prototype testing.



Hydrodynamic lubrication Fig. 4:

and

support

[N/mm<sup>2</sup>]

#### **Boundary lubrication**

Characterised by:

- Rubbing of the shaft against the bearing with virtually no lubricant separating the two surfaces.
- Bearing material selection is critical to performance.
- Shaft wear is likely due to contact between bearing and shaft.
- The excellent properties of Hi-eX material minimises wear under these conditions.
- The dynamic coefficient of friction with Hi-eX is typically 0.02 to 0.15 under boundary lubrication conditions.

 The static coefficient of friction with HieX is typically 0.05 to 0.20 under boundary lubrication conditions.

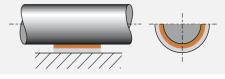



Fig. 6: Boundary lubrication

# 4.5 Characteristics of Fluid Lubricated Hi-eX Bearings

Hi-eX is particularly effective in the most demanding of lubricated applications

· High load conditions

In highly loaded applications operating under boundary or mixed film conditions Hi-eX shows excellent wear resistance.

- Start up and shut down under load With insufficient speed to generate a hydrodynamic film the bearing will operate under boundary or mixed film conditions.
  - Hi-eX minimises wear

be maintained, for example:

where full hydrodynamic operation cannot

#### · Sparse lubrication

Many applications require the bearing to operate with less than the ideal lubricant supply, typically with splash or mist lubrication only.

The PEEK lining of Hi-eX has low thermal conductivity relative to conventional metallic bearings, and therefore depending upon the operating conditions may require a greater lubricant supply to remove the generated heat in the bearing.

- Hi-eX shows greater wear resistance than conventional metallic bearings.

### 4.6 Design Guidance for Fluid Lubricated Applications

Fig. 7, Page 11 shows the three lubrication regimes discussed above plotted on a

#### In order to use Fig. 7

- Using the formulae in Section 5
  - Calculate the specific load  $\overline{p}$
  - Calculate the shaft surface speed U

#### Note:

Viscosity is a function of operating temperature. If the operating temperature of the fluid is unknown, a provisional temperature of 25 °C above ambient can be used. graph of sliding speed vs the ratio of specific load to lubricant viscosity.

- Using the viscosity temperature relationships presented in Table 4.
  - Determine the viscosity in centipoise of the lubricant.

#### Area 1 of Fig. 7

The bearing will operate with boundary lubrication.

The  $\overline{p}U$  factor will be the major determinant of bearing life.

If 
$$epU/\eta \le 0.2$$
 then

$$(4.6.1) \qquad [h] L_{H} = \frac{2250}{\left(\frac{e\bar{p}U}{\eta}\right)^{0.5}} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$$

If 0.2 <  $e\overline{p}U/\eta \leq 1.0$  then

$$L_{H} = \frac{1000}{\left(\frac{e\bar{p}U}{\eta}\right)} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$$

[h]

#### Area 2 of Fig. 7

The bearing will operate with mixed film lubrication.

pU factor is no longer a significant parameter in determining the bearing life.

#### Area 3 of Fig. 7

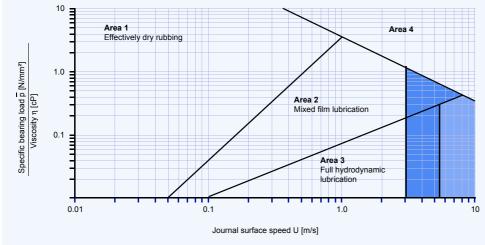
The bearing will operate with hydrodynamic lubrication. Bearing wear will be determined only by the cleanliness of the

#### Area 4 of Fig. 7

- These are the most demanding operating conditions.
- The bearing is operated under either high speed or high bearing load to viscosity ratio, or a combination of both.
- These conditions may cause

Hi-eX bearing performance can be estimated from the following:

Calculate Effective  $\overline{p}U$  Factor from Section 5.8.


If 
$$e\overline{p}U/\eta > 1.0$$
 then  
(4.6.3) [h]  

$$L_{H} = \frac{1000}{\left(\frac{e\overline{p}U}{\eta}\right)^{2}} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$$

Hi-eX bearing performance will depend upon the nature of the fluid and the actual service conditions.

lubricant and the frequency of start up and shut down.

- excessive operating temperature
- and/or high wear rate.
- Bearing performance may be improved:
  - by use of unindented Hi-eX lining
  - by the addition of one or more grooves to the bearing
  - by shaft surface finish < 0.05 [ $\mu$ m R<sub>a</sub>].



Increased clearances may be necessary

Detail bearing design may be necessary - consult the company

#### Conditions:

- Steady unidirectional loading

- Continuous, non reversing shaft rotation
   Sufficient clearance between shaft and bearing
- Sufficient lubricant flow

Fig. 7: Design guide for lubricated application

| 10   |                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                             |                                                                                                                                                    |                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 20                                              | 30                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                         | 50                                                                                                   | 60                                                                                                                          | 70                                                                                                                                                 | 80                                                                                                                                             | 90                                                                                                                                                                                                | 100                                                                                                                                                                                                                        | 110                                                                                                                                                                                                                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                             |                                                                                                                                                    |                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 146  | 77                                              | 44                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                         | 18                                                                                                   | 13                                                                                                                          | 9.3                                                                                                                                                | 7.0                                                                                                                                            | 5.5                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                        | 3.6                                                                                                                                                                                                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 247  | 121                                             | 67                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                         | 25                                                                                                   | 17                                                                                                                          | 12                                                                                                                                                 | 9.0                                                                                                                                            | 6.9                                                                                                                                                                                               | 5.4                                                                                                                                                                                                                        | 4.4                                                                                                                                                                                                                                             | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 395  | 190                                             | 102                                                                                                                                                                                                       | 59                                                                                                                                                                                                                                                                                                         | 37                                                                                                   | 24                                                                                                                          | 17                                                                                                                                                 | 12                                                                                                                                             | 9.3                                                                                                                                                                                               | 7.2                                                                                                                                                                                                                        | 5.8                                                                                                                                                                                                                                             | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 780  | 335                                             | 164                                                                                                                                                                                                       | 89                                                                                                                                                                                                                                                                                                         | 52                                                                                                   | 33                                                                                                                          | 22                                                                                                                                                 | 15                                                                                                                                             | 11.3                                                                                                                                                                                              | 8.6                                                                                                                                                                                                                        | 6.7                                                                                                                                                                                                                                             | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1290 | 540                                             | 255                                                                                                                                                                                                       | 134                                                                                                                                                                                                                                                                                                        | 77                                                                                                   | 48                                                                                                                          | 31                                                                                                                                                 | 21                                                                                                                                             | 15                                                                                                                                                                                                | 11                                                                                                                                                                                                                         | 8.8                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.0  | 3.4                                             | 3.0                                                                                                                                                                                                       | 2.6                                                                                                                                                                                                                                                                                                        | 2.3                                                                                                  | 2.0                                                                                                                         | 1.7                                                                                                                                                | 1.4                                                                                                                                            | 1.1                                                                                                                                                                                               | 0.95                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.56 | 0.52                                            | 0.48                                                                                                                                                                                                      | 0.44                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                 | 0.36                                                                                                                        | 0.33                                                                                                                                               | 0.31                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.7  | 1.5                                             | 1.3                                                                                                                                                                                                       | 1.1                                                                                                                                                                                                                                                                                                        | 0.95                                                                                                 | 0.85                                                                                                                        | 0.75                                                                                                                                               | 0.65                                                                                                                                           | 0.60                                                                                                                                                                                              | 0.55                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.30 | 1.0                                             | 0.84                                                                                                                                                                                                      | 0.69                                                                                                                                                                                                                                                                                                       | 0.55                                                                                                 | 0.48                                                                                                                        | 0.41                                                                                                                                               | 0.34                                                                                                                                           | 0.32                                                                                                                                                                                              | 0.28                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 247<br>395<br>780<br>1290<br>4.0<br>0.56<br>1.7 | 247         121           395         190           780         335           1290         540           4.0         3.4           0.56         0.52           1.7         1.5           1.30         1.0 | 247         121         67           395         190         102           780         335         164           1290         540         255           4.0         3.4         3.0           0.56         0.52         0.48           1.7         1.5         1.3           1.30         1.0         0.84 | 2471216740395190102597803351648912905402551344.03.43.02.60.560.520.480.441.71.51.31.11.301.00.840.69 | 247121674025395190102593778033516489521290540255134774.03.43.02.62.30.560.520.480.440.401.71.51.31.10.951.301.00.840.690.55 | 24712167402517395190102593724780335164895233129054025513477484.03.43.02.62.32.00.560.520.480.440.400.361.71.51.31.10.950.851.301.00.840.690.550.48 | 2471216740251712395190102593724177803351648952332212905402551347748314.03.43.02.62.32.01.70.560.520.480.440.400.360.331.71.51.31.10.950.850.41 | 24712167402517129.0395190102593724171278033516489523322151290540255134774831214.03.43.02.62.32.01.71.40.560.520.480.440.400.360.330.311.71.51.31.10.950.850.750.651.301.00.840.690.550.480.410.34 | 24712167402517129.06.939519010259372417129.3780335164895233221511.3129054025513477483121154.03.43.02.62.32.01.71.41.10.560.520.480.440.400.360.330.31111.71.51.31.10.950.480.410.340.321.301.00.840.690.550.480.410.340.32 | 24712167402517129.06.95.439519010259372417129.37.2780335164895233221511.38.612905402551347748312115114.03.43.02.62.32.01.71.41.10.950.560.520.480.440.400.360.330.311.71.51.31.10.950.850.750.650.600.551.301.00.840.690.550.480.410.340.320.28 | 247         121         67         40         25         17         12         9.0         6.9         5.4         4.4           395         190         102         59         37         24         17         12         9.0         6.9         5.4         4.4           395         190         102         59         37         24         17         12         9.3         7.2         5.8           780         335         164         89         52         33         22         15         11.3         8.6         6.7           1290         540         255         134         77         48         31         21         15         11         8.8           4.0         3.4         3.0         2.6         2.3         2.0         1.7         1.4         1.1         0.95         .           0.56         0.52         0.48         0.40         0.36         0.33         0.31         .         .         .           1.7         1.5         1.3         1.1         0.95         0.85         0.75         0.65         0.60         0.55         .           1.30         1.0 | 247         121         67         40         25         17         12         9.0         6.9         5.4         4.4         3.6           395         190         102         59         37         24         17         12         9.3         7.2         5.8         4.7           780         335         164         89         52         33         22         15         11.3         8.6         6.7         5.3           1290         540         255         134         77         48         31         21         15         11         8.8         7.0           4.0         3.4         3.0         2.6         2.3         2.0         1.7         1.4         1.1         0.95            0.56         0.52         0.48         0.44         0.40         0.36         0.33         0.31              1.7         1.5         1.3         1.1         0.95         0.85         0.75         0.65         0.60         0.55            1.30         1.0         0.84         0.69         0.55         0.48         0.41         0.34         0.32 | 247         121         67         40         25         17         12         9.0         6.9         5.4         4.4         3.6         3.0           395         190         102         59         37         24         17         12         9.3         7.2         5.8         4.7         3.9           780         335         164         89         52         33         22         15         11.3         8.6         6.7         5.3         4.3           1290         540         255         134         77         48         31         21         15         11         8.8         7.0         5.6           4.0         3.4         3.0         2.6         2.3         2.0         1.7         1.4         1.1         0.95          5.6           4.0         3.4         3.0         2.6         2.3         2.0         1.7         1.4         1.1         0.95             0.56         0.52         0.48         0.40         0.36         0.33         0.31                1.7         1.5         1.3 |

Table 4: Viscosity data

### 4.7 Wear Rate and Re-lubrication Intervals with Grease lubrication

At specific bearing loads below 100 N/mm<sup>2</sup> a grease lubricated Hi-eX bearing shows only small bedding-in wear of about 0.0025 mm. This is followed by little wear during the early part of the bearing life until the lubricant becomes exhausted and the wear rate increases. If the bearing is regreased before the rate of wear starts to increase rapidly the material will continue to function satisfactorily with little wear. Fig. 8 shows the typical wear pattern. Under specific loads above 100 N/mm<sup>2</sup> the initial bedding-in wear is greater, typically about 0.025 mm, followed by a decreasing wear rate until the bearing exhibits a similar wear/life relationship to that shown in Fig. 8.

The useful life of the bearing is limited by wear in the loaded area. If this wear exceeds 0.15mm the grease capacity of the indents is reduced and more frequent regreasing of the bearing will be required.

#### **Fretting Wear**

Oscillating movements of less than the dimensions of the indent pattern may cause localised wear of the mating surface after prolonged usage. This will result in the indent pattern becoming transferred onto the mating surface in contact with the Hi-eX bearing and may also give rise to fretting corrosion damage. In this situation DS<sup>TM</sup> material should be considered as an alternative to Hi-eX.

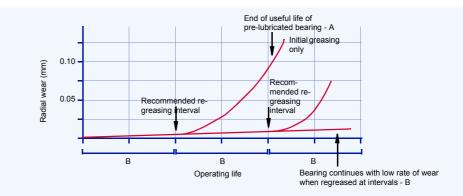



Fig. 8: Typical wear of Hi-eX

# 5 Design Factors

The main parameters when determining the size or calculating the service life for a Hi-eX bearing are:

- Specific Load Limit plim [N/mm<sup>2</sup>]
- pU Factor [N/mm<sup>2</sup> x m/s]

# 5.1 Specific Load

The specific load  $\overline{p}$  is defined as the working load devided by the projected area of

[N/mm<sup>2</sup>]

#### + Mating surface roughness $R_a\left[\mu m\right]$

- · Mating surface material
- Temperature T [°C]
- Other environmental factors eg. housing design, dirt, lubrication.

the bearing and is expressed in N/mm<sup>2</sup>.

# Bushes (5.1.1)

$$\overline{p} = \frac{F}{D_i \cdot B}$$

#### **Thrust Washers**

(5.1.2) 
$$\bar{p} = \frac{4F}{\pi \cdot (D_o^2 - D_i^2)}$$
 [N/mm<sup>2</sup>

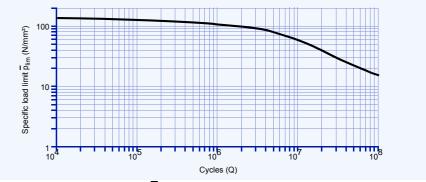
p

$$=\frac{F}{L\cdot W}$$

[N/mm<sup>2</sup>]

#### **Specific Load Limit**

The maximum load which can be applied to a Hi-eX bearing can be expressed in terms of the Specific Load Limit, which depends on the type of the loading and lubrication. It is highest under steady loads. Conditions of dynamic load or oscillating movement which produce fatigue stress in the bearing result in a reduction in the specific load limit. The values of Specific Load Limit specified in Table 5 assume good alignment between the bearing and mating surface. The Specific Load Limit for Hi-eX reduces for bearing operating temperatures in excess of 70  $^{\circ}$ C, falling to about half the values given in Table 5 for temperatures above 150  $^{\circ}$ C.


Conditions of dynamic load or oscillating movement which produce fatigue stress in the bearing result in a reduction in the permissible Specific Load Limit (Fig. 9, Page 14).

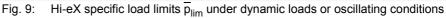

| Load              | Operating condition                                                                        | Lubrication                               | p <sub>lim</sub> |
|-------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|------------------|
| Steady            | Intermittent or very slow (below<br>0.01 m/s) continuous rotation or<br>oscillating motion | Grease or oil                             | 140              |
| Steady            | Continuous rotation or oscillating motion                                                  | Grease or oil (bound-<br>ary lubrication) | 90               |
| Steady or dynamic | Continuous rotation or oscillating motion                                                  | Oil (hydrodynamic lub-<br>rication)       | 60               |

Table 5: Specific load limit plim for Hi-eX

#### 🔿 GLACIER GARLOCK BEARINGS

# **5 Design Factors**





[N/mm<sup>2</sup>]

### 5.2 Sliding Speed

The sliding speed U [m/s] is calculated as follows:

#### **Continuous Rotation**

#### Bushes (5.2.1)

 $U = \frac{D_i \cdot \pi \cdot N}{60 \cdot 10^3}$ 

| I hrust V | vashers                                      |         |
|-----------|----------------------------------------------|---------|
| (5.2.2)   | $II = \frac{D_o + D_i}{2} \cdot \pi \cdot N$ | [N/mm²] |
|           | $60.10^3$                                    |         |

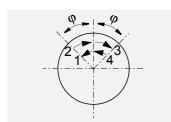



Fig. 10: Oscillating cycle  $\phi$ 

# **Oscillating Movement**

Bushes  
(5.2.3) [N/mm<sup>2</sup>]  
$$U = \frac{D_i \cdot \pi}{60 \cdot 10^3} \cdot \frac{4\varphi \cdot N_{osz}}{360}$$

The maximum permissible effective pU

factor (epU factor) for grease lubricated Hi-

eX bearings is dependent upon the sliding

# Thrust Washers $U = \frac{\frac{D_o + D_i}{2} \cdot \pi}{60 \cdot 10^3} \cdot \frac{4\varphi \cdot N_{osz}}{360}$

speed as shown in Fig. 11. For sliding speeds in excess of 2.5 m/s continuous oil lubrication is recommended.

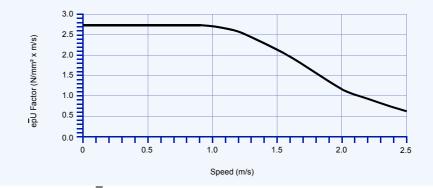



Fig. 11: Maximum epU factor for grease lubrication

# 5.3 pU Factor

The useful operating life of a Hi-eX bearing is governed by the pU factor, which is calculated as follows:

(5.3.1)1)  $[N/mm^2 \times m/s]$  $\bar{p}U = \bar{p} \cdot U$ 

calculation of the bearing service life by

the speed/load application factor  $a_{\mbox{\scriptsize Q}}$  shown

in Figs. 15-17.

### 5.4 Load

In addition to its contribution to the  $\overline{pU}$  factor the type and direction of the applied load also affects the performance of a Hiex bearing. This is accomoda- ted in the

#### Type of Load

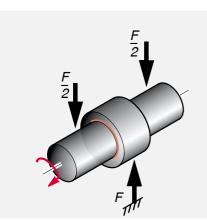



Fig. 12: Steady load, vertically downwards, bush stationary, shaft rotating. Lubricant drains to loaded area

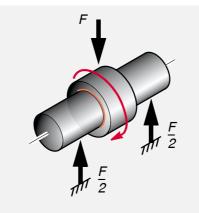



Fig. 14: Rotating load, shaft stationary, bush rotating

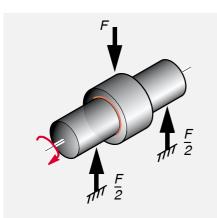



Fig. 13: Steady load, vertically upwards, bush stationary, shaft rotating. Lubricant drains away from loaded area

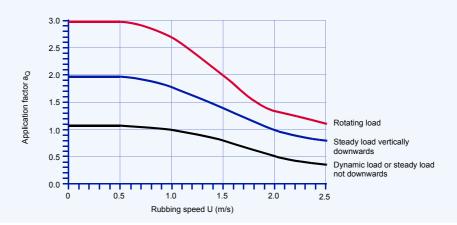



Fig. 15: Application factor a<sub>Q</sub> for MB range bushes - unmachined

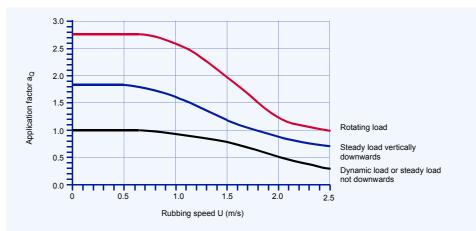



Fig. 16: Application factor  $a_{\mbox{\scriptsize Q}}$  for PM range and MB range bushes - machined

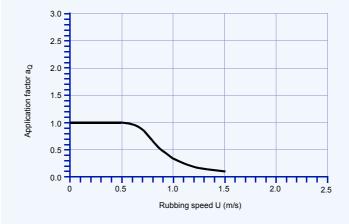



Fig. 17: Application factor  $a_Q$  for thrust washers Note:  $a_Q = 1$  for slideways

### 5.5 Temperature

The useful life of a Hi-eX bearing depends upon the operating temperature. The performance of grease lubricated Hi-eX decreases at bearing temperatures above 40 °C. This loss of performance is related to both material and lubricant effects.

For a given  $\overline{p}U$  Factor the operating tempe-rature of the bearing depends upon

the temperature of the surrounding environment and the heat dissipation properties of the housing.

In calculating the service life of Hi-eX these effects are accomodated by the application factor  $a_T$  shown in Fig. 18

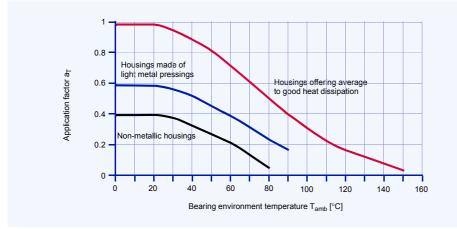



Fig. 18: Hi-eX application factor a<sub>T</sub>

### 5.6 Mating Surface

The wear rate of Hi-eX is strongly dependent upon the roughness of the mating counterface. For optimum bearing performance the mating surface should be ground to better than 0.4  $\mu m$   $R_a.$  This effect is accomodated by the mating surface finish application factor  $a_S$  shown in Fig. 19.

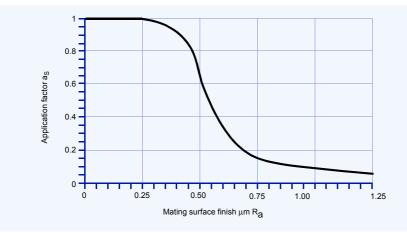



Fig. 19: Hi-eX application factor a<sub>S</sub>

### 5.7 Bearing Size

Frictional heat generated at the bearing surface and dissipated through the shaft and housing depends both on the operating conditions (i.e.  $\overline{pU}$  factor) and the bearing size.

For a give  $\overline{pU}$  condition a large bearing will run hotter than a smaller bearing. The bearing size factor  $a_B$  shown in Fig. 20 takes account of this effect.

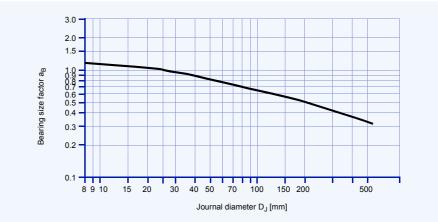



Fig. 20: Bearing size factor a<sub>B</sub>

Note: a<sub>B</sub> = 1 for slideways

# 5.8 Estimation of Bearing Service Life with Grease Lubrication

#### **Calculation Parameters**

| Bushes           |                | Thrust Washers                | _  | Slide Plates   |   | Unit |
|------------------|----------------|-------------------------------|----|----------------|---|------|
| Bearing diameter | D <sub>i</sub> | Bearing outside dia-<br>meter | Do | Bearing Length | L | [mm] |
| Bearing length   | В              | Bearing inside<br>diameter    | Di | Bearing Width  | W | [mm] |

#### **Operating Conditions**

| Load                                 | F                       | [N]      |
|--------------------------------------|-------------------------|----------|
| Rotational Speed (Continuous)        | Ν                       | [1/min]  |
| Oscillating Frequency                | N <sub>osz</sub>        | [1/min]  |
| Angular movement about mean position | φ                       | [°]      |
| Specific Load Limit                  | see Table 5, Page 13    | [N/mm²d] |
| Application Factor a <sub>Q</sub>    | see Fig. 15-17, Page 16 | [-]      |
| Application Factor a <sub>T</sub>    | see Fig. 18, Page 17    | [-]      |
| Application Factor a <sub>S</sub>    | see Fig. 19, Page 17    | [-]      |
| Bearing Size Factor a <sub>B</sub>   | see Fig. 20, Page 18    | [-]      |

### Calculate p from the equations in 5.1 on Page 13.

#### Calculate U from the equations in 5.2 on Page 14.

#### Calculate pU from the equation in 5.3 on Page 15.

[-]

[-]

[h]

#### Calculate High Load Factor a<sub>E</sub>

#### Note:

 $a_E = rac{\overline{p}_{lim}}{\overline{p}_{lim} - \overline{p}}$ 

If  $a_E$ > 10000, or  $a_E$  < 0, the bearing is overloaded.

# Calculate Effective pU Factor epU

#### Note:

 $e\overline{p}U = rac{a_E \cdot \overline{p}U}{a_B}$ 

Check that  $e\overline{p}U$  is less than limit set in Fig. 11 for the sliding speed U. If NOT, increase the bearing length or use continuous lubrication.

#### **Estimate Bearing Life**

If  $e\overline{p}U < 1.0$  then (5.8.3) [h]  $L_H = \frac{3000}{e\overline{p}U} \cdot a_Q \cdot a_T \cdot a_S$ 

If 
$$e\overline{p}U > 1.0$$
 then  
(5.8.4) [h]  
 $L_H = \frac{3000}{e\overline{p}U^{2_*4}} \cdot a_Q \cdot a_T \cdot a_S$ 

#### **Estimate Re-greasing Interval**

(5.8.5)

(5.8.6)

(5.8.1)

(5.8.2)

 $L_{RG} = \frac{L_H}{2}$ 

#### **Oscillating Motion and Dynamic Loads**

#### Oscillating Motion

#### Dynamic Loads

Calculate number of cycles

$$Z_T = L_{RG} \cdot N_{osz} \cdot 60 \cdot (R+2)$$

Calculate number of cycles  
(5.8.7) [-]  
$$C_T = L_{RG} \cdot C \cdot 60 \cdot (R+2)$$

where R = Number of times bearing is regreased during total life required.

Check that  $Z_T$  (or  $C_T$ ) is less than the total number of cycles Q given in Fig. 9 for actual bearing specific load p.

If  $Z_T$  (or  $C_T$ ) > Q then life will be limited by fatigue after Q cycles.

If  $Z_T$  (or  $C_T$ ) < Q then life will be limited by wear after  $Z_T$  cycles.

If the estimated life or total cycles are insufficient or the regreasing intervals are too frequent, increase the bearing length or diameter, or consider drip feed or continuous oil lubrication, the quantity to be established by test.

C GLACIER GARLOCK BEARINGS

# 5.9 Worked Examples

#### PM cylindrical Bush

#### **PM cylindrical Bush**

| Given:                              |                                                                  |                                                                                                                   |                                                                                                                                                                                                        | Given:                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Steady Load                         | Inside Diameter D <sub>i</sub>                                   | 40 mm                                                                                                             | Load Details                                                                                                                                                                                           | Steady Load                                                                                                                                                                                                                                                                                                                                          | Inside Diameter D <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                              | 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Direction: down                     | Length B                                                         | 30 mm                                                                                                             |                                                                                                                                                                                                        | Direction: up                                                                                                                                                                                                                                                                                                                                        | Length B                                                                                                                                                                                                                                                                                                                                                                                    | 60 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Steel, R <sub>a</sub> = 0.4 µm      | Bearing Load F                                                   | 20000 N                                                                                                           | Shaft                                                                                                                                                                                                  | Steel, R <sub>a</sub> = 0.3 µm                                                                                                                                                                                                                                                                                                                       | Bearing Load F                                                                                                                                                                                                                                                                                                                                                                              | 45000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Temperature 85 °C                   | Rotational Speed N                                               | 30 1/min                                                                                                          |                                                                                                                                                                                                        | Temperature 80 °C                                                                                                                                                                                                                                                                                                                                    | Rotational Speed N                                                                                                                                                                                                                                                                                                                                                                          | 35 1/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Light metal - poor heat dissipation |                                                                  |                                                                                                                   |                                                                                                                                                                                                        | good heat dissipation                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                     | Direction: down<br>Steel, $R_a = 0.4 \mu m$<br>Temperature 85 °C | Direction: down Length B<br>Steel, R <sub>a</sub> = 0.4 μm Bearing Load F<br>Temperature 85 °C Rotational Speed N | Direction: down         Length B         30 mm           Steel, R <sub>a</sub> = 0.4 μm         Bearing Load F         20000 N           Temperature 85 °C         Rotational Speed N         30 1/min | Steady Load         Inside Diameter D <sub>i</sub> 40 mm         Load Details           Direction: down         Length B         30 mm         Steel, R <sub>a</sub> = 0.4 μm         Bearing Load F         20000 N         Shaft           Temperature 85 °C         Rotational Speed N         30 1/min         Shaft         Stead         Stead | Steady Load         Inside Diameter Di         40 mm         Load Details         Steady Load           Direction: down         Length B         30 mm         Direction: up           Steel, Ra = 0.4 μm         Bearing Load F         20000 N         Shaft         Steel, Ra = 0.3 μm           Temperature 85 °C         Rotational Speed N         30 1/min         Temperature 80 °C | Steady Load         Inside Diameter Di         40 mm         Load Details         Steady Load         Inside Diameter Di           Direction: down         Length B         30 mm         Direction: up         Length B           Steel, R <sub>a</sub> = 0.4 µm         Bearing Load F         20000 N         Shaft         Steel, R <sub>a</sub> = 0.3 µm         Bearing Load F           Temperature 85 °C         Rotational Speed N         30 1/min         Temperature 80 °C         Rotational Speed N |  |

| Calculation Constants and Application Fa         | ctors                  |                    | Calculation Constants and Application Fac        | ctors                |                    |
|--------------------------------------------------|------------------------|--------------------|--------------------------------------------------|----------------------|--------------------|
| Specific Load Limit plim at 85 °C                | 81.5 N/mm <sup>2</sup> | (Table 5, Page 13) | Specific Load Limit plim at 40 °C                | 90 N/mm <sup>2</sup> | (Table 5, Page 13) |
| Application Factor a <sub>T</sub>                | 0.2                    | (Fig. 18, Page 17) | Application Factor a <sub>T</sub>                | 0.50                 | (Fig. 18, Page 17) |
| Mating Surface Application Factor a <sub>S</sub> | 0.85                   | (Fig. 19, Page 17) | Mating Surface Application Factor a <sub>S</sub> | 1.00                 | (Fig. 19, Page 17) |
| Bearing Size Factor a <sub>B</sub> for ø 40      | 0.95                   | (Fig. 20, Page 18) | Bearing Size Factor a <sub>B</sub> for ø 100     | 0.65                 | (Fig. 20, Page 18) |
| Application Factor for PM bush a <sub>Q</sub>    | 1.8                    | (Fig. 16, Page 16) | Application Factor for PM bush a <sub>Q</sub>    | 1.0                  | (Fig. 16, Page 16) |
|                                                  |                        |                    |                                                  |                      |                    |

| Calculation                          | Ref                 | Value                                                                                                                                         | Calculation                          | Ref                 | Value                                                                                                                                     |
|--------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| p [N/mm²]                            | (5.1.1),<br>Page 13 | $D_i \cdot B = 40 \cdot 30$                                                                                                                   |                                      |                     | $\bar{p} = \frac{r}{D_i \cdot B} = \frac{45000}{100 \cdot 60} = 7,50$                                                                     |
| Sliding Speed<br>U [m/s]             | (5.2.1),<br>Page 14 | $U = \frac{D_i \cdot \pi \cdot N}{60 \cdot 10^3} = \frac{40 \cdot \pi \cdot 30}{60000} = 0.063$                                               | Sliding Speed<br>U [m/s]             | (5.2.1),<br>Page 14 | $U = \frac{D_{i} \cdot \pi \cdot N}{60 \cdot 10^{3}} = \frac{100 \cdot \pi \cdot 35}{60000} = 0.183$                                      |
|                                      | Page 19             | $a_E = \frac{p_{lim}}{\bar{p}_{lim} - \bar{p}} = \frac{81.5}{81.5 - 16.67} = 1.25$                                                            | High Load Easter                     | (5 0 1)             |                                                                                                                                           |
|                                      |                     | $e\bar{p}U = \frac{a_E \cdot \bar{p}U}{a_B} = \frac{1.25 \cdot 16.67 \cdot 0.063}{0.95} = 1.382$                                              | 6                                    |                     | $e\bar{p}U = \frac{a_E \cdot p_B}{a_B} = \frac{1.091 \cdot 7.5 \cdot 0.185}{0.65} = 2.307$                                                |
| Life<br>L <sub>H</sub> [h] for epU>1 | (5.8.3),<br>Page 19 | $L_{H} = \frac{3000}{e\bar{\rho}U^{2,4}} \cdot a_{Q} \cdot a_{T} \cdot a_{S} = \frac{3000}{1.382^{2,4}} \cdot 1.8 \cdot 0.2 \cdot 0.85 = 434$ | Life<br>L <sub>H</sub> [h] for epU>1 | (5.8.3),<br>Page 19 | $L_{H} = \frac{3000}{e\bar{p}U^{2.4}} \cdot a_{0} \cdot a_{7} \cdot a_{8} = \frac{3000}{2.307^{2.4}} \cdot 1.0 \cdot 1.0 \cdot 0.5 = 202$ |
| L <sub>RG</sub> [h]                  | (5.8.3),<br>Page 19 | $L_{RG} = \frac{L_{H}}{2} = \frac{434}{2} = 217$                                                                                              | L <sub>RG</sub> [h]                  | (5.8.3),<br>Page 19 | $L_{RG} = \frac{L_{H}}{2} = \frac{202}{2} = 101$                                                                                          |

### MB cylindrical bush

| Given:       |                                        |                                |          |  |  |  |  |
|--------------|----------------------------------------|--------------------------------|----------|--|--|--|--|
| Load Details | Steady Load, oscillating               | Inside Diameter D <sub>i</sub> | 80 mm    |  |  |  |  |
|              | Direction: down                        | Length B                       | 40 mm    |  |  |  |  |
| Shaft        | Steel, R <sub>a</sub> = 0.3 µm         | Bearing Load F                 | 200000 N |  |  |  |  |
|              | ambient Temperature                    | Frequency Nosz                 | 5 1/min  |  |  |  |  |
| Housing      | Light metal -<br>poor heat dissipation | Angle φ                        | 20°      |  |  |  |  |

| Calculation Constants and Application Factors                                 |      |                    |  |  |  |
|-------------------------------------------------------------------------------|------|--------------------|--|--|--|
| Specific Load Limit p <sub>lim</sub> 140 N/mm <sup>2</sup> (Table 5, Page 13) |      |                    |  |  |  |
| Application Factor a <sub>T</sub>                                             | 0.60 | (Fig. 18, Page 17) |  |  |  |
| Mating Surface Application Factor aS                                          | 1.00 | (Fig. 19, Page 17) |  |  |  |
| Bearing Size Factor a <sub>B</sub> for ø 80                                   | 0.75 | (Fig. 20, Page 18) |  |  |  |
| Application Factor for MB bush a <sub>O</sub>                                 | 1.80 | (Fig. 16, Page 16) |  |  |  |

#### Thrust washer

| Given:       |                                |                                |         |
|--------------|--------------------------------|--------------------------------|---------|
| Load Details | Steady Load                    | Inside Diameter D <sub>i</sub> | 40 mm   |
|              | Direction: down                | Outside Diameter Do            | 78 mm   |
| Counterface  | Steel, R <sub>a</sub> = 0.2 µm | Bearing Load F                 | 50000 N |
|              | Temperature 50 °C              | 25 1/min                       |         |
| Housing      | Light metal - poor heat d      |                                |         |

| Calculation Constants and Application Factors    |                      |                    |  |  |  |
|--------------------------------------------------|----------------------|--------------------|--|--|--|
| Specific Load Limit plim                         | 90 N/mm <sup>2</sup> | (Table 5, Page 13) |  |  |  |
| Application Factor a <sub>T</sub> for 50 °C      | 0.50                 | (Fig. 18, Page 17) |  |  |  |
| Mating Surface Application Factor a <sub>S</sub> | 1.00                 | (Fig. 19, Page 17) |  |  |  |
| Bearing Size Factor a <sub>B</sub> for ø 40      | 0.95                 | (Fig. 20, Page 18) |  |  |  |
| Application Factor for Thrust washers aQ         | 1.00                 | (Fig. 17, Page 16) |  |  |  |

| Calculation                                            | Ref                 | Value                                                                                                                                                         |
|--------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Specific Load</u><br>p [N/mm²]                      | (5.1.1),<br>Page 13 | $\bar{p} = \frac{F}{D_i \cdot B} = \frac{200000}{80 \cdot 40} = 62,,5$                                                                                        |
| Sliding Speed<br>U [m/s]                               | (5.2.3),<br>Page 14 | $U = \frac{D_i \cdot \pi}{60 \cdot 10^3} \cdot \frac{4 \phi \cdot N_{osz}}{360} = \frac{80 \cdot \pi}{60000} \cdot \frac{4 \cdot 20 \cdot 1.11}{360} = 0.001$ |
| High Load Factor<br>a <sub>E</sub> [-]<br>(must be >0) | (5.8.1),<br>Page 19 | $a_E = \frac{\overline{p}_{lim}}{\overline{p}_{lim} - \overline{p}} = \frac{140}{140 - 10.11} = 1.806$                                                        |
| epU Factor<br>[-]                                      | (5.8.2),<br>Page 19 | $e\bar{p}U = \frac{a_E \cdot \bar{p}U}{a_B} = \frac{1.806 \cdot 62.5 \cdot 0.001}{0.75} = 0.151$                                                              |
| Life<br>L <sub>H</sub> [h] for epU<1                   | (5.8.3),<br>Page 19 | $L_{H} = \frac{3000}{e\bar{p}U} \cdot a_{Q} \cdot a_{T} \cdot a_{S} = \frac{3000}{0.151} \cdot 1.8 \cdot 0.6 \cdot 1.0 = 21456$                               |
| L <sub>RG</sub> [h]                                    | (5.8.3),<br>Page 19 | $L_{RG} = \frac{L_H}{2} = \frac{21456}{2} = 10728$                                                                                                            |
| Z <sub>T</sub> [-]                                     | (5.8.3),<br>Page 19 | $Z_{T} = L_{RG} \cdot N_{osz} \cdot 60 \cdot (R+2) = 10728 \cdot 5 \cdot 60 \cdot 2 = 6.44 \cdot 10^{6}$                                                      |
|                                                        |                     | Q for $\overline{p} = 62.5 = 1.5 \times 10^6$ ; Z <sub>T</sub> > Q<br>Therefore bearing fails by fatigue after 1.5 x 10 <sup>6</sup> cycles                   |

|   | Calculation                                            | Ref                 | Value                                                                                                                                                                               |
|---|--------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | <u>Specific Load</u><br>p [N/mm <sup>2</sup> ]         | (5.1.1),<br>Page 13 | = 4 · F 4 · 50000 44 00                                                                                                                                                             |
|   | Sliding Speed<br>U [m/s]                               | (5.2.2),<br>Page 14 | $U = \frac{\frac{D_o + D_i}{2} \cdot \pi \cdot N}{\frac{60 \cdot 10^3}{60 \cdot 10^3}} = \frac{\frac{78 + 40}{2} \cdot \pi \cdot 25}{\frac{60 \cdot 10^3}{60 \cdot 10^3}} = 0.0772$ |
|   | High Load Factor<br>a <sub>E</sub> [-]<br>(must be >0) | (5.8.1),<br>Page 19 | $a_E = \frac{\overline{p}_{lim}}{\overline{p}_{lim} - \overline{p}} = \frac{90}{90 - 14.20} = 1.187$                                                                                |
| - | epU Factor<br>[-]                                      |                     | $e\bar{p}U = \frac{a_E \cdot \bar{p}U}{a_B} = \frac{1.187 \cdot 14.20 \cdot 0.0772}{0.95} = 1.370$                                                                                  |
| - | Life<br>L <sub>H</sub> [h] for epU>1                   | (5.8.3),<br>Page 19 | $L_{H} = \frac{3000}{e\bar{\rho}U^{2.4}} \cdot a_{Q} \cdot a_{T} \cdot a_{S} = \frac{3000}{1.370^{2.4}} \cdot 1.0 \cdot 0.5 \cdot 1.0 = 704$                                        |
|   | L <sub>RG</sub> [h]                                    | (5.8.3),<br>Page 19 | $L_{RG} = \frac{L_H}{2} = \frac{704}{2} = 352$                                                                                                                                      |

# Design Factors 5

# 6 Data Sheet

Application:

# 6.1 Data for bearing design calculations

| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           | <br>                                                                                                                                                                                                                                                                                                                       |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Cylindrical Bush                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thrust Washer                                                                                                                                                                                                                                                                  | Slideplate                                                                                                                                                                                                                                | Special (Ske                                                                                                                                                                                                                                                                                                               | etch)                       |
| Rotational movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Steady load                                                                                                                                                                                                                                                                    | Rotating load                                                                                                                                                                                                                             | Oscillating n                                                                                                                                                                                                                                                                                                              | novement Linear movement    |
| <ul> <li>Existing Design</li> <li>Quantity</li> <li>Dimensions in mm</li> <li>Inside Diameter</li> <li>Outside Diameter</li> <li>Length</li> <li>Length of slideplate</li> <li>Width of slideplate</li> <li>Thickness of slideplate</li> <li>Thickness of slideplate</li> <li>Adial load</li> <li>or specific load</li> <li>Axial load</li> <li>or specific load</li> <li>Movement</li> <li>Rotational speed</li> <li>Speed</li> <li>Length of Stroke</li> <li>Frequency of Stroke</li> <li>Oscillating cycle</li> <li>Oscillating frequency</li> <li>Service hours per day</li> <li>Continuous operation</li> <li>Intermittent operation</li> <li>Operating time</li> <li>Days per year</li> </ul> | New Design           Di           Do           B           L           W           SS           F [N]           p [N/mm²]           F [N]           p [N/mm²]           N [1/min]           U [m/s]           Ls [mm]           [1/min]           φ [°]           Nosz [1/min] | Shaft<br>Bearing I<br>Operatin<br>Ambient<br>Housing<br>perties<br>Light pre<br>which po<br>Non meta<br>transfer p<br>Alternate<br>Mating s<br>Material<br>Hardness<br>Surface f<br>Dry<br>Continuo<br>Process<br>Initial lub<br>Hydrodyn | ag Environment<br>temperature<br>with good heat transf<br>ssing or insulated hor<br>or heat transfer prope<br>al housing with poor h<br>properties<br>operation in water an<br><b>surface</b><br>s<br>finish<br>ion<br>us lubrication<br>fluid lubrication<br>rication only<br>namic conditions<br>Fluid<br>t<br>viscosity | using erties                |
| Customer Data<br>Company:<br>Street:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City:<br>Post Code:                                                                                                                                                                                                                                                            | Project:<br>Name:<br>Tel.:                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            | Date:<br>Signature:<br>Fax: |

# 7 Bearing Assembly

### 7.1 Dimensions and Tolerances

For optimum performance it is essential that the correct running clearance is used and that both the diameter of the shaft and the bore of the housing are finished to the limits given in the tables.

If the bearing housing is unusually flexible

amount and the running clearance will be more than the optimum. In these circumstances the housing should be bored slightly undersize or the journal diameter increased, the correct size being determined by experiment.

the bush will not close in by the calculated

### 7.2 Tolerances for minimum clearance

#### **Grease lubrication**

The minimum clearance required for satisfactory performance of Hi-eX depends upon the pU factor, the sliding speed and the environmental temperature, any one or combination of which may reduce the diametral clearance in operation due to inward thermal expansion of the Hi-eX polymer lining. It is therefore necessary to compensate for this.

Fig. 21 shows the minimum diametral clearance plotted stepped against journal diameter at an ambient 20 °C. Where the stepped lines show a change of clearance for a given journal diameter, the lower value is used.

The superimposed straight lines indicate the minimum permissible diametral clear-

ance for various values of  $\overline{p}Uu$  (Fig. 21), where  $\overline{p}U$  is calculated as in 5.3 on Page 15, and u is a sliding speed factor for speeds in excess of 0.5 m/s given in Fig. 22.

If the clearance indicated for a pUu factor lies below the stepped lines the recommended standard shaft may be used. If above, the shaft size must be reduced to obtain the clearance indicated on the vertical axis of the relevant figure.

Under slow speed and high load conditions it may be possible to achieve satisfactory performance with diametral clearances less than those indicated. But adequate prototype testing is recommended in such cases.

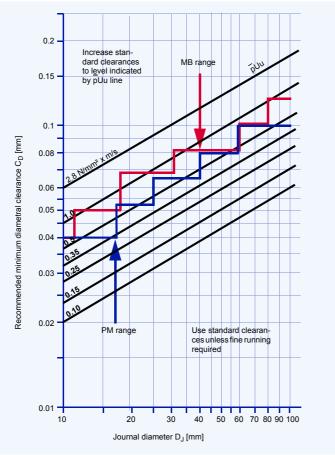



Fig. 21: Minimum clearance for PM prefinished and MB machinable range machined to H7 bore

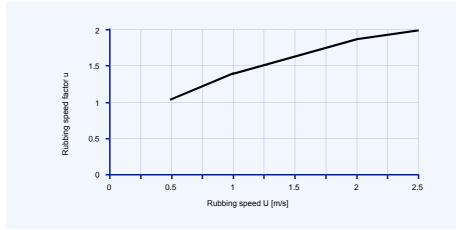



Fig. 22: Rubbing speed factor u

#### 🔵 GLACIER GARLOCK BEARINGS

#### **Fluid Lubrication**

The minimum clearance required for journal bearings operating under hydrodynamic or mixed film conditions for a range of shaft rotational speeds and diameters is shown in Fig. 23 It is recommended that the bearing performance under minimum clearance conditions be confirmed by testing if possible.

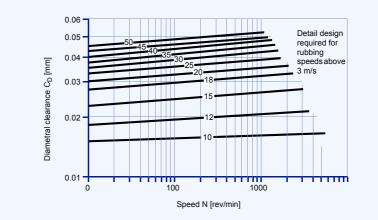



Fig. 23: Hi-eX minimum clearances - bush diameters D<sub>i</sub> 10-50 mm

#### **Allowance for Thermal Expansion**

For operation in high temperature environments the clearance should be increased by the amounts indicated by Fig. 24 to compensate for the inward thermal expansion of the bearing lining.

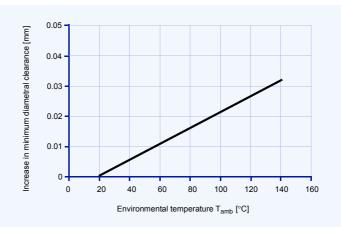



Fig. 24: Recommended increase in diametral clearance

If the housing is non-ferrous then the bore should be reduced by the amounts given in Table 5, in order to give an increased interference fit to the bush, with a similar reduction in the journal diameter additional to that indicated by Fig. 24.

| Housing material    | Reduction in housing<br>diameter per 100°C rise | Reduction in shaft diameter<br>per 100°C rise |  |  |
|---------------------|-------------------------------------------------|-----------------------------------------------|--|--|
| Aluminium alloys    | 0.1%                                            | 0.1% + values from Fig. 24                    |  |  |
| Copper base alloys  | 0.05%                                           | 0.05% + values from Fig. 24                   |  |  |
| Steel and cast iron | Nil                                             | values from Fig. 24                           |  |  |
| Zinc base alloys    | 0.15%                                           | 0.15% + values from Fig. 24                   |  |  |

Table 6: Allowance for high temperature

### 7.3 Counterface Design

Hi-eX bearings may be used with all conventional mating surface materials. Hardening of steel journals is not required unless abrasive dirt is present or if the projected bearing life is in excess of 2000 hours, in which cases a minimum shaft hardness of 350HB is recommended.

A ground surface finish of better than

0.4  $\mu m$   $R_a$  is recommended. The final direction of machining of the mating surface should preferably be the same as the direction of motion relative to the bearing in service.

Hi-eX is normally used in conjunction with ferrous journals and thrust faces, but in damp or corrosive surroundings stainless steel, hard chromium plated mild steel, or alternatively WH shaft sleeves are recommended. When plated mating surfaces are specified the plating should possess adequate strength and adhesion, particularly if the bearing is to operate with high fluctuating loads.

The shaft or thrust collar used in conjunction with the Hi-eX bush or thrust washer must extend beyond the bearing surface in order to avoid cutting into it. The mating surface must also be free from grooves or flats, the end of the shaft should be given a lead-in chamfer and all sharp edges or projections which may damage the soft polymer lining of the HieX must be removed.

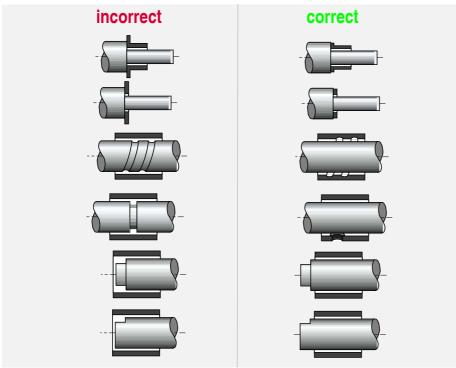



Fig. 25: Counterface design

### 7.4 Installation

#### **Important Note**

Care must be taken to ensure that the HieX lining material is not damaged during the installation.

#### **Fitting of Bushes**

The bush is inserted into its housing with the aid of a stepped mandrel, preferably made from case hardened mild steel, as shown in Fig. 26. The following should be noted to avoid damage to the bearing:

- · Housing diameter is as recommended
- 15-20 deg lead-in chamfer on housing
- The bush must be square to the housing
- Light smear of oil on bush OD

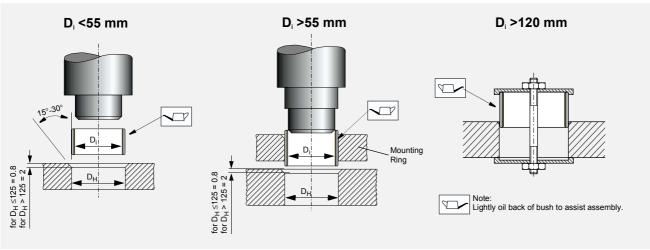



Fig. 26: Fitting of bushes

#### **Insertion Forces**

Fig. 27 gives an indication of the maximum insertion force required to correctly install

standard Hi-eX bushes.

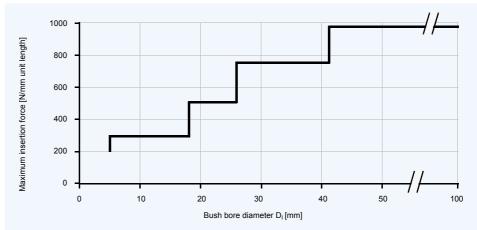



Fig. 27: Maximum insertion force F<sub>i</sub>

#### Alignment

Accurate alignment is an important consideration for all bearing assemblies. With Hi-eX bearings misalignment over the length of a bush (or pair of bushes), or over the diameter of a thrust washer should not exceed 0.020 mm as illustrated in Fig. 28.

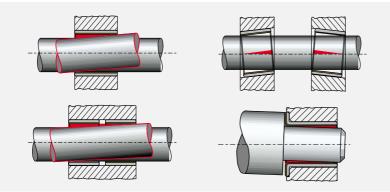



Fig. 28: Alignment

#### Sealing

While Hi-eX can tolerate the ingress of some contaminant materials into the bearing without loss of performance, where there is the possibility of highly

abrasive material entering the bearing, a suitable sealing arrangement, as illustrated in Fig. 29 should be provided.

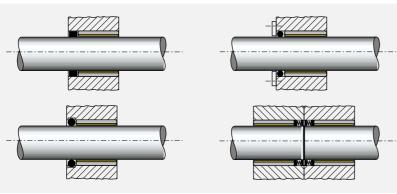



Fig. 29: Recommended sealing arrangements

#### **Axial Location**

Where axial location is necessary, it is generally advisable to fit Hi-eX thrust washers in conjunction with Hi-eX bushes, even when the axial loads are low. Experi-

#### **Fitting of Thrust Washers**

Hi-eX thrust washers should be located on the outside diameter in a recess as shown in Fig. 30. The inside diameter must be clear of the shaft in order to prevent contact with the steel backing of the Hi-eX material. The recess diameter should be 0.125 mm larger than the washer diameter and the depth as given in the product tables. ence has shown that fretting debris from unsatisfactory locating surfaces can enter an adjacent Hi-eX bush and adversely affect the bearing life and performance.

If there is no recess for the thrust washer one of the following methods of fixing may be used:

- · two dowel pins
- two screws
- adhesive

### **GLACIER GARLOCK BEARINGS**

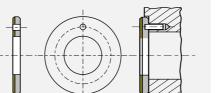
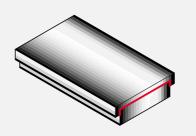
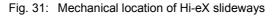



Fig. 30: Installation of Thrust-Washer

Hi-eX strip material for use as slideway


bearings should be installed using one of


Slideways

the following methods:

#### Important Note

- Dowel pins should be recessed 0.25 mm below the bearing surface
- Screws should be countersunk 0.25 mm below the bearing surface
- + Hi-eX must not be heated above 250  $^\circ\mathrm{C}$
- Contact adhesive manufacturers for guidance on the selection of suitable adhesives
- Protect the bearing surface to prevent contact with adhesive
- Ensure the washer ID does not touch the shaft after assembly
- Ensure that the washer is mounted with the steel backing to the housing
- countersunk screws
  - · adhesives
  - · mechanical location





# 8 Machining

### 8.1 Machining Practice

The PEEK polymer lining of Hi-eX has good machining characteristics and can be treated as a free cutting brass in most respects. The indents in the bearing surface may lead to the formation of burrs or whiskers due to the resilience of the lining material, but this can be avoided by using machining methods which remove the lining as a ribbon, rather than a narrow thread. When machining Hi-eX it is recommended that not more than 0.125 mm is removedfrom the lining thickness in order to ensure that the lubricant capacity of the indents remaining after machining is not significantly reduced.

Boring, reaming and broaching are all suitable machining methods for use with HieX. The recommended tool material is high speed steel or tungsten carbide, respectively diamonds for long toolservice times.

### 8.2 Boring

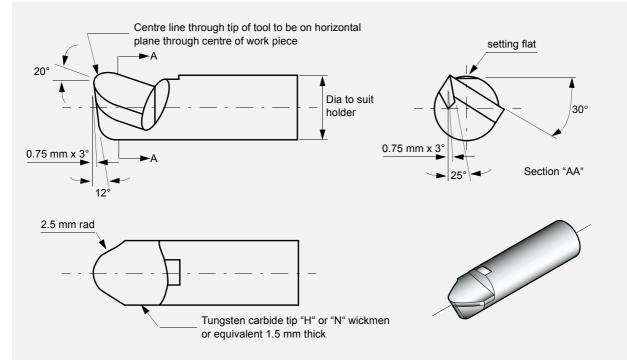
Fig. 32 illustrates a recommended boring tool which should be mounted with its axis at right angles to the direction of feed.

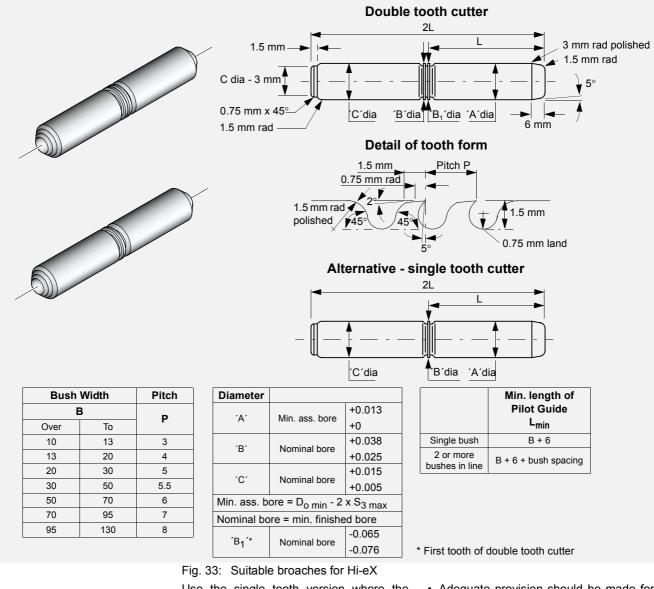
The essential characteristic required in the boring tool is a tip radius greater than

1.5 mm, which combined with a side rake of 30° will produce the ribbon effect required.

Cutting speeds should be high, the optimum between 2.0 and 4.5 m/s. The feed should be low, in the range 0.05/0.025 mm for cuts of 0.125 mm, the lower feeds being used with the higher cutting speeds.

Satisfactory finishes can usually be obtained machining dry and an air blast may facilitate swarfe removal. The use of coolant is not detrimental.





Fig. 32: Boring tool for Hi-eX

# 8.3 Reaming

Hi-eX can be reamed satisfactorily by hand with a straight-fluted expanding reamer. For best results the reamer should be sharp, the cut 0.025-0.050 mm and the feed slow. Where hand reaming is not desired machining speeds of about 0.05 m/s are recommended with the cuts and feeds as for boring.

# 8.4 Broaching

Fig. 33 shows broaches suitable for finishing bushes up to 65 mm diameter. The broach should be used dry, at a speed of 0.1-0.5 m/s.



Use the single tooth version where the bush is less than 25 mm long, and the double tooth broach for longer bushes or

for two or more bushes together. If it is necessary to make up a special form of broach the following points should be noted:  Adequate provision should be made for locating the bush by providing a pilot to suit the bore of the bush when pressed home. A rear support shoulder should locate in the broached bore of the bush after cutting. Alternatively, special guides may be provided external to the workpiece.

- If two bushes are to be broached in line, then the pilot guide and rear support should be longer than the distance between the two bushes.
- For large bushes it may be necessary to provide axial relief along the length of the pilot guide and rear support, in order to reduce the broaching forces.

# 8.5 Vibrobroaching

This technique may also be used. A single cutter is propelled with progressive reciprocating motion with a vibration frequency of typically 50 Hz. The cutter should have a primary rake of  $1.5^{\circ}$  for 0.5 mm. A cut of

0.25 mm on diameter may be made at an average cutting speed of 0.15 m/s to give a surface finish of better than 0.8  $\mu$ m R<sub>a</sub>, which is acceptable.

the minimum cutting pressure should be

used and care taken to ensure that any

steel or bronze particles protruding into the

remaining bearing material, and all burrs,

· Unless a guided broach is used, the tool

will follow the initial bore alignment of the

bush, broaching cannot improve concen-

tricity and parallelism unless external

In general owing to the variation in wall

thickness of large diameter bushes, broa-

ching is not suitable for finishing bores of more than 60 mm diameter unless external

guides are used.

guides are used.

### 8.6 Modification of components

The modification of Hi-eX bearing components requires no special procedures. In general it is more satisfactory to perform machining or drilling operations from the polymer lining side in order to avoid burrs. When cutting is done from the steel side,

# 8.7 Drilling Oil Holes

Bushes should be adequately supported during the drilling operation to ensure that

# 8.8 Cutting Strip Material

Hi-eX strip material may be cut to size by any one of the following methods. Care must be taken to protect the bearing surface from damage and to ensure that no deformation of the strip occurs. no distortion is caused by the drilling pres-

- Using side and face cutter, or slitting saw, with the strip held flat and securely on a horizontal milling machine.
- Cropping

sure.

are removed.

- Guillotine (For widths less than 90 mm only)
- · Water-jet cutting, Laser cutting

# 9 Electroplating

#### **Hi-eX Components**

To provide corrosion protection the mild steel backing of Hi-eX may be electroplated with most of the conventional electroplating metals including the following:

- zinc ISO 2081-2
- nickel ISO 1456-8
- hard chromium ISO 1456-8

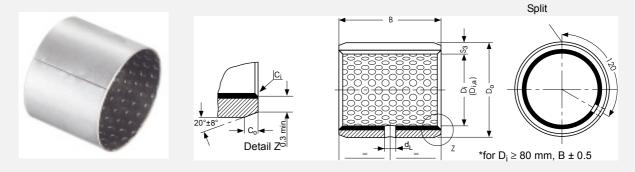
For the harder materials if the specified plating thickness exceeds approximately

#### **Mating Surfaces**

Hi-eX can be used against hard chrome plated materials and care should be taken to ensure that the recommended shaft

#### Note:

The parts shown in the following tables are not available from stock.


 $5\,\mu m$  then the housing diameter should be increased by twice the plating thickness in order to maintain the correct assembled bearing bore size.

Where electrolytic attack is possible tests should be conducted to ensure that all the materials in the bearing environment are mutually compatible.

sizes and surface finish are achieved after the plating process.

# **10 Standard Products**

# 10.1 PM-HX cylindrical bushes



Dimensions and Tolerances according to ISO 3547 and GSP-Specifications

| Part No.   |    | ninal<br>ze | Length<br>B    | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> h8 | Housing-ø<br>D <sub>H</sub> H7 | Bush i-ø<br>D <sub>1a</sub> when<br>ass. in H7<br>housing | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |
|------------|----|-------------|----------------|-------------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|
|            | Di | Do          | max.<br>min.   | max.<br>min.                        | max.<br>min.                 | max.<br>min.                   | max.<br>min.                                              | max.<br>min.                |                              |
| PM 0808 HX |    |             | 8.00<br>7.50   |                                     | 8.000<br>7.978               | 10.015<br>10.000               |                                                           | 0.127<br>0.040              | No hole                      |
| PM 0810 HX | 8  | 10          | 10.00<br>9.50  |                                     |                              |                                | 8.107<br>8.040                                            |                             |                              |
| PM 0812 HX |    |             | 12.00<br>11.50 |                                     |                              |                                |                                                           |                             |                              |
| PM 1010 HX |    |             | 10.25<br>9.75  |                                     | 10.000<br>9.978              | 12.018<br>12.000               | 10.110<br>10.040                                          | 0.135<br>0.040              | 3                            |
| PM 1012 HX | 10 | 12          | 12.25<br>11.75 |                                     |                              |                                |                                                           |                             | 5                            |
| PM 1015 HX | 10 | 12          | 15.25<br>14.75 |                                     |                              |                                |                                                           |                             | 4                            |
| PM 1020 HX |    |             | 20.25<br>19.75 |                                     |                              |                                |                                                           |                             | -                            |
| PM 1210 HX |    |             | 10.25<br>9.75  |                                     | 12.000<br>11.973             | 14.018<br>14.000               | 12.110<br>12.040                                          |                             | 3                            |
| PM 1212 HX |    |             | 12.25<br>11.75 |                                     |                              |                                |                                                           |                             | 5                            |
| PM 1215 HX | 12 | 14          | 15.25<br>14.75 | 0.980<br>0.955                      |                              |                                |                                                           |                             |                              |
| PM 1220 HX |    |             | 20.25<br>19.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 1225 HX |    |             | 25.25<br>24.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 1415 HX |    |             | 15.25<br>14.75 |                                     | 14.000<br>13.973             | 16.018<br>16.000               | 14.110<br>14.040                                          |                             |                              |
| PM 1420 HX | 14 | 16          | 20.25<br>19.75 |                                     |                              |                                |                                                           |                             | 4                            |
| PM 1425 HX |    |             | 25.25<br>24.75 |                                     |                              |                                |                                                           |                             | -                            |
| PM 1510 HX |    |             | 10.25<br>9.75  |                                     |                              |                                |                                                           |                             |                              |
| PM 1512 HX | 15 | 17          | 12.25<br>11.75 |                                     | 15.000                       | 17.018                         | 15.108                                                    |                             |                              |
| PM 1515 HX |    |             | 15.25<br>14.75 | 14.973                              | 17.000                       | 15.040                         |                                                           |                             |                              |
| PM 1525 HX |    |             |                | 25.25<br>24.75                      |                              |                                |                                                           |                             |                              |

#### ID and OD chamfers

| S <sub>3</sub> | Co          | Ci                  | S <sub>3</sub>          | Co          | Ci          |  |  |  |  |
|----------------|-------------|---------------------|-------------------------|-------------|-------------|--|--|--|--|
| 0.75           | max. 0.3*   | max. 0.3*           | 2                       | $1.2\pm0.4$ | $0.4\pm0.3$ |  |  |  |  |
| 1              | $0.6\pm0.4$ | max. 0.4*           | 2.5                     | $1.8\pm0.6$ | $0.6\pm0.4$ |  |  |  |  |
| 1.5            | $0.6\pm0.4$ | $0.4\pm0.3^{\star}$ | * alternatively rounded |             |             |  |  |  |  |

All dimensions in mm

**GLACIER GARLOCK BEARINGS** 

# 10 Standard Products

| Part No.   |    | ninal<br>ze | Length<br>B             | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> h8 | Housing-ø<br>D <sub>H</sub> H7 | Bush i-ø<br>D <sub>1a</sub> when<br>ass. in H7<br>housing | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |
|------------|----|-------------|-------------------------|-------------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|
|            | Di | Do          | max.<br>min.            | max.<br>min.                        | max.<br>min.                 | max.<br>min.                   | max.<br>min.                                              | max.<br>min.                |                              |
| PM 1615 HX |    |             | 15.25<br>14.75          |                                     | 16.000<br>15.973             |                                |                                                           | 0.135<br>0.040              |                              |
| PM 1620 HX | 16 | 18          | 20.25<br>19.75          | 0.980                               |                              | 18.018<br>18.000               | 16.110<br>16.040                                          |                             |                              |
| PM 1625 HX |    |             | 25.25<br>24.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 1815 HX |    |             | 15.25<br>14.75          | 0.955                               | 18.000<br>17.973             |                                |                                                           |                             |                              |
| PM 1820 HX | 18 | 20          | 20.25<br>19.75          |                                     |                              | 20.021<br>20.000               | 18.111<br>18.040                                          |                             |                              |
| PM 1825 HX |    |             | 25.25<br>24.75          |                                     |                              |                                |                                                           |                             | 4                            |
| PM 2010 HX |    |             | 10.25<br>9.75           |                                     |                              |                                |                                                           |                             |                              |
| PM 2015 HX |    |             | 15.25<br>14.75          |                                     | 20.000<br>19.967             |                                |                                                           | 0.164<br>0.050              |                              |
| PM 2020 HX | 20 | 23          | 20.25<br>19.75          |                                     |                              | 23.021<br>23.000               | 20.131<br>20.050                                          |                             |                              |
| PM 2025 HX |    |             | 25.25<br>24.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 2030 HX |    |             | 30.25<br>29.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 2215 HX |    |             | 15.25<br>14.75          | 1.475                               | 22.000<br>21.967             | 25.021<br>25.000               | 22.131<br>22.050                                          |                             |                              |
| PM 2220 HX | 22 | 25          | 20.25<br>19.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 2225 HX |    |             | 25.25<br>24.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 2230 HX |    |             | 30.25<br>29.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 2415 HX |    |             | 14.75                   | 20.25<br>19.75<br>25.25<br>24.75    | 24.000<br>23.967             | 27.021<br>27.000               | 24.131<br>24.050                                          |                             |                              |
| PM 2420 HX | 24 | 27          | 19.75                   |                                     |                              |                                |                                                           |                             |                              |
| PM 2425 HX |    |             | 24.75                   |                                     |                              |                                |                                                           |                             |                              |
| PM 2430 HX |    |             | 30.25<br>29.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 2515 HX |    |             | 15.25<br>14.75          |                                     |                              |                                |                                                           |                             |                              |
| PM 2520 HX | 25 | 28          | 20.25<br>19.75          |                                     | 25.000<br>24.967             | 28.021<br>28.000               | 25.131<br>25.050                                          |                             | 6                            |
| PM 2525 HX |    |             | 25.25<br>24.75<br>30.25 |                                     |                              |                                |                                                           |                             |                              |
| PM 2530 HX |    |             | 29.75<br>30.25          |                                     |                              |                                |                                                           |                             |                              |
| PM 2830 HX |    | 31          | 29.75<br>20.25          |                                     |                              | 31.025<br>31.000               | 28.131<br>28.050                                          |                             |                              |
| PM 2820 HX | 28 |             | 20.25<br>19.75<br>25.25 |                                     | 28.000<br>27.967             | 32.025                         | 28 155                                                    |                             |                              |
| PM 2825 HX |    | 32          | 23.25<br>24.75<br>30.25 | 1.970<br>1.935                      | 27.907                       | 32.025                         | 28.155<br>28.060<br>30.155<br>30.060                      |                             |                              |
| PM 2830 HX |    |             | 29.75<br>20.25          |                                     |                              |                                |                                                           | 0.188<br>0.060              |                              |
| PM 3020 HX |    |             | 20.25<br>19.75<br>30.25 | 1.000                               | 30.000                       | 34.025                         |                                                           | 0.000                       |                              |
| PM 3030 HX | 30 | 34          | 29.75<br>40.25          |                                     | 29.967                       | 34.025                         |                                                           |                             |                              |
| PM 3040 HX |    |             | 40.25<br>39.75          |                                     |                              |                                |                                                           |                             |                              |

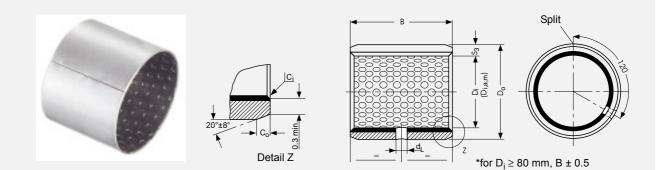
All dimensions in mm

# Standard 10 Products

| Part No.   |    | ninal<br>ze | Length<br>B    | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> h8 | Housing-ø<br>D <sub>H</sub> H7 | Bush i-ø<br>D <sub>1a</sub> when<br>ass. in H7<br>housing | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |
|------------|----|-------------|----------------|-------------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|
|            | Di | Do          | max.<br>min.   | max.<br>min.                        | max.<br>min.                 | max.<br>min.                   | max.<br>min.                                              | max.<br>min.                |                              |
| PM 3220 HX |    |             | 20.25<br>19.75 |                                     | 32.000<br>31.961<br>35.000   |                                |                                                           |                             |                              |
| PM 3230 HX |    | 20          | 30.25<br>29.75 |                                     |                              | 36.025<br>36.000               | 32.155                                                    |                             |                              |
| PM 3235 HX | 32 | 36          | 35.25<br>34.75 |                                     |                              |                                | 32.060                                                    |                             |                              |
| PM 3240 HX |    |             | 40.25<br>39.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 3520 HX |    |             | 20.25<br>19.75 |                                     |                              | 39.025                         |                                                           |                             | 6                            |
| PM 3530 HX | 35 | 39          | 30.25<br>29.75 |                                     |                              |                                | 35.155                                                    |                             | 0                            |
| PM 3535 HX | 55 | 55          | 35.25<br>34.75 | 1.970                               | 34.961                       | 39.000                         | 35.060                                                    | 0.194                       |                              |
| PM 3550 HX |    |             | 50.25<br>49.75 | 1.935                               |                              |                                |                                                           | 0.060                       |                              |
| PM 3635 HX | 36 | 40          | 35.25<br>34.75 |                                     | 36.000<br>35.961             | 40.025<br>40.000               | 36.155<br>36.060                                          |                             |                              |
| PM 3720 HX | 37 | 41          | 20.25<br>19.75 |                                     | 37.000<br>36.961             | 41.025<br>41.000               | 37.155<br>37.060                                          |                             |                              |
| PM 4020 HX |    |             | 20.25<br>19.75 |                                     | 40.000<br>39.961             | 44.025<br>44.000               | 40.155<br>40.060                                          |                             |                              |
| PM 4030 HX | 40 | 44          | 30.25<br>29.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 4040 HX |    |             | 40.25<br>39.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 4050 HX |    |             | 50.25<br>49.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 4520 HX |    |             | 20.25<br>19.75 |                                     | 45.000<br>44.961             | 50.025<br>50.000               | 45.195<br>45.080                                          | 0.234<br>0.080              |                              |
| PM 4530 HX |    |             | 30.25<br>29.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 4540 HX | 45 | 50          | 40.25<br>39.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 4545 HX |    |             | 45.25<br>44.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 4550 HX |    |             | 50.25<br>49.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 5040 HX |    |             | 40.25<br>39.75 |                                     | 50.000<br>49.961             | 55.030<br>55.000               | 50.200<br>50.080                                          | 0.239<br>0.080              |                              |
| PM 5050 HX | 50 | 55          | 50.25<br>49.75 |                                     |                              |                                |                                                           |                             | 8                            |
| PM 5060 HX |    |             | 60.25<br>59.75 |                                     |                              |                                |                                                           |                             |                              |
| PM 5520 HX |    |             | 20.25<br>19.75 | 2.460                               |                              |                                |                                                           |                             |                              |
| PM 5525 HX |    |             | 25.25<br>24.75 | 2.415                               |                              |                                | 55.200                                                    |                             |                              |
| PM 5530 HX | 55 | 60          | 30.25<br>29.75 |                                     | 55.000<br>54.954             | 60.030<br>60.000               |                                                           |                             |                              |
| PM 5540 HX |    |             | 40.25<br>39.75 |                                     | 04.904                       | 00.000                         | 55.080                                                    |                             |                              |
| PM 5550 HX |    |             | 50.25<br>49.75 |                                     |                              |                                |                                                           | 0.246<br>0.080              |                              |
| PM 5560 HX |    |             | 60.25<br>59.75 |                                     |                              |                                |                                                           | 0.060                       |                              |
| PM 6030 HX |    |             | 30.25<br>29.75 |                                     |                              | 65.030                         | 60.200                                                    |                             |                              |
| PM 6040 HX | 60 | 65          | 40.25<br>39.75 |                                     | 60.000                       |                                |                                                           |                             |                              |
| PM 6060 HX |    |             | 60.25<br>59.75 |                                     | 59.954                       | 65.000                         | 60.080                                                    |                             |                              |
| PM 6070 HX |    |             | 70.25<br>69.75 |                                     |                              |                                |                                                           | All dimen                   | sions in mm                  |

### 10 Standard Products

| Part No.    |       | ninal<br>ze    | Length<br>B     | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> h8 | Housing-ø<br>D <sub>H</sub> H7 | Bush i-ø<br>D <sub>1a</sub> when<br>ass. in H7<br>housing | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |    |    |    |    |    |                |       |        |        |        |       |
|-------------|-------|----------------|-----------------|-------------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|----|----|----|----|----|----------------|-------|--------|--------|--------|-------|
|             | Di    | Do             | max.<br>min.    | max.<br>min.                        | max.<br>min.                 | max.<br>min.                   | max.<br>min.                                              | max.<br>min.                |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 6540 HX  |       |                | 40.25<br>39.75  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 6550 HX  | 65    | 70             | 50.25<br>49.75  |                                     | 65.000                       | 70.030                         | 65.262                                                    |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 6560 HX  | 00    | 70             | 60.25<br>59.75  |                                     | 64.954                       | 70.000                         | 65.100                                                    |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 6570 HX  |       |                | 70.25<br>69.75  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 7040 HX  |       |                | 40.25<br>39.75  |                                     |                              |                                |                                                           |                             | 8                            |    |    |    |    |    |                |       |        |        |        |       |
| PM 7050 HX  |       |                | 50.25<br>49.75  |                                     |                              |                                |                                                           | 0.308                       |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 7065 HX  | 70    | 75             | 65.25<br>64.75  |                                     | 70.000<br>69.954             | 75.030<br>75.000               | 70.262<br>70.100                                          | 0.100                       |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 7070 HX  |       |                | 70.25<br>69.75  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 7080 HX  |       |                | 80.25<br>79.75  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 7540 HX  |       |                | 40.25<br>39.75  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 7560 HX  | 75    | 80             | 60.25<br>59.75  |                                     | 75.000<br>74.954             | 80.030<br>80.000               | 75.262<br>75.100                                          |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 7580 HX  |       |                | 80.25<br>79.75  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 8040 HX  |       | 85             | 40.50<br>39.50  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 8060 HX  | 80    |                | 85              | 85                                  | 85                           | 85                             | 85                                                        | 85                          | 85                           | 85 | 85 | 85 | 85 | 85 | 60.50<br>59.50 | 2.450 | 80.000 | 85.035 | 80.267 | 0.313 |
| PM 8080 HX  |       |                | 80.50<br>79.50  | 2.384                               | 79.954                       | 85.000                         | 80.100                                                    | 0.100                       |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 80100 HX |       |                | 100.50<br>99.50 |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 8530 HX  |       |                | 30.50<br>29.50  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 8540 HX  |       |                | 40.50<br>39.50  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 8560 HX  | 85    | 90             | 60.50<br>59.50  |                                     | 85.000<br>84.946             | 90.035<br>90.000               | 85.267<br>85.100                                          |                             | 9.5                          |    |    |    |    |    |                |       |        |        |        |       |
| PM 8580 HX  |       |                | 80.50<br>79.50  |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 85100 HX |       |                | 100.50<br>99.50 |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 9040 HX  |       |                | 40.50<br>39.50  |                                     |                              |                                |                                                           | 0.321                       |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 9060 HX  |       |                | 60.50<br>59.50  |                                     |                              |                                |                                                           | 0.100                       |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 9080 HX  | 90 95 | 80.50<br>79.50 |                 | 90.000<br>89.946                    | 95.035<br>95.000             | 90.267<br>90.100               |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 9090 HX  |       | 90.50<br>89.50 |                 |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 90100 HX |       |                | 100.50<br>99.50 |                                     |                              |                                |                                                           |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 9560 HX  | 95    | 100            | 60.50<br>59.50  |                                     | 95.000                       | 100.035                        | 95.267                                                    |                             |                              |    |    |    |    |    |                |       |        |        |        |       |
| PM 95100 HX |       |                | 100.50<br>99.50 |                                     | 94.946                       | 100.000                        | 95.100                                                    |                             |                              |    |    |    |    |    |                |       |        |        |        |       |


| Part No.     |         | ninal<br>ze    | Length<br>B                       | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> h8 | Housing-ø<br>D <sub>H</sub> H7 | Bush i-ø<br>D <sub>1a</sub> when<br>ass. in H7<br>housing | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |
|--------------|---------|----------------|-----------------------------------|-------------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|
|              | Di      | Do             | max.<br>min.                      | max.<br>min.                        | max.<br>min.                 | max.<br>min.                   | max.<br>min.                                              | max.<br>min.                |                              |
| PM 10050 HX  |         |                | 50.50<br>49.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 10060 HX  |         |                | 60.50<br>59.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 10080 HX  | 100     | 105            | 80.50<br>79.50                    |                                     | 100.000<br>99.946            | 105.035<br>105.000             | 100.267<br>100.100                                        |                             |                              |
| PM 10095 HX  |         |                | 95.50<br>94.50                    |                                     |                              | 100.000                        | 100.100                                                   |                             |                              |
| PM 100115HX  |         |                | 115.50<br>114.50                  |                                     |                              |                                |                                                           |                             |                              |
| PM 10560 HX  |         |                | 60.50<br>59.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 105110 HX | 105     | 110            | 59.50<br>110.50<br>109.50         |                                     | 105.000<br>104.946           | 110.035<br>110.000             | 105.267<br>105.100                                        | 0.321<br>0.100              |                              |
| PM 105115 HX |         |                | 115.50<br>114.50                  |                                     |                              |                                |                                                           |                             |                              |
| PM 11060 HX  |         |                | 60.50<br>59.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 110110 HX | 110     | 115            | 110.50<br>109.50                  | 2.450<br>2.384                      | 110.000<br>109.946           | 115.035<br>115.000             | 110.267<br>105.100                                        |                             | 9.5                          |
| PM 110115 HX |         |                | 115.50<br>114.50                  |                                     |                              |                                |                                                           |                             |                              |
| PM 11550 HX  | 115     | 120            | 50.50<br>49.50                    |                                     | 115.000                      | 120.035                        | 115.267                                                   |                             |                              |
| PM 11570 HX  | 115     | 120            | 70.50<br>69.95                    |                                     | 114.946                      | 120.000                        | 115.100                                                   |                             |                              |
| PM 12060 HX  |         |                | 60.50<br>59.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 120100 HX | 120     | 125            | 100.50<br>99.50                   |                                     | 120.000<br>119.946           | 125.040<br>125.000             | 120.272<br>120.100                                        | 0.326<br>0.100              |                              |
| PM 120110 HX |         |                | 110.50<br>109.50                  |                                     |                              |                                |                                                           |                             |                              |
| PM 12560 HX  |         |                | 60.50<br>59.50<br>100.50<br>99.50 |                                     |                              |                                |                                                           |                             |                              |
| PM 125100 HX | 125     | 130            |                                   |                                     | 125.000<br>124.937           | 130.040<br>130.000             | 125.272<br>125.100                                        | 0.335<br>0.100              |                              |
| PM 125110 HX |         |                | 110.50<br>109.50                  |                                     |                              |                                |                                                           |                             |                              |
| PM 13050 HX  |         |                | 50.50<br>49.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 13060 HX  | 130     | 135            | 60.50<br>59.50                    |                                     | 130.000                      | 135.040                        | 130.280                                                   |                             |                              |
| PM 13080 HX  |         |                | 80.50<br>79.50                    |                                     | 129.937                      | 135.000                        | 130.130                                                   |                             |                              |
| PM 130100 HX |         |                | 100.50<br>99.50                   |                                     |                              |                                |                                                           |                             |                              |
| PM 13560 HX  | 135     | 140            | 60.50<br>59.50                    |                                     | 135.000                      | 140.040                        | 135.280                                                   |                             |                              |
| PM 13580 HX  |         |                | 80.50<br>79.50                    |                                     | 134.937                      | 140.000                        | 135.130                                                   |                             |                              |
| PM 14050 HX  |         |                | 50.50<br>49.50                    | 2.435                               |                              |                                |                                                           | 0.343                       | -                            |
| PM 14060 HX  | 140     | 145            | 60.50<br>59.50                    | 2.380                               | 140.000                      | 145.040                        | 140.280                                                   | 0.130                       |                              |
| PM 14080 HX  |         | 140 145        | 80.50<br>79.50                    |                                     | 139.937                      | 145.000                        | 140.130                                                   |                             |                              |
| PM 140100 HX |         |                | 100.50<br>99.50                   |                                     |                              |                                |                                                           |                             |                              |
| PM 15050 HX  |         |                | 50.50<br>49.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 15060 HX  | 150 155 | 155            | 60.50<br>59.50                    |                                     | 150.000                      | 155.040                        |                                                           |                             |                              |
| PM 15080 HX  |         | 80.50<br>79.50 |                                   | 155.000                             | 150.130                      |                                |                                                           |                             |                              |
| PM 150100 HX |         |                | 100.50<br>99.50                   |                                     |                              |                                |                                                           | All dimen                   | sions in mm                  |

### 10 Standard Products

| Part No.     |         | ninal<br>ze    | Length<br>B      | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> h8       | Housing-ø<br>D <sub>H</sub> H7 | Bush i-ø<br>D <sub>1a</sub> when<br>ass. in H7<br>housing | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |  |
|--------------|---------|----------------|------------------|-------------------------------------|------------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|--|
|              | Di      | Do             | max.<br>min.     | max.<br>min.                        | max.<br>min.                       | max.<br>min.                   | max.<br>min.                                              | max.<br>min.                |                              |  |
| PM 16050 HX  |         |                | 50.50<br>49.50   |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 16060 HX  |         |                | 60.50<br>59.50   |                                     | 160.000                            | 165.040                        | 160.280                                                   |                             |                              |  |
| PM16080 HX   | 160     | 165            | 80.50<br>79.50   |                                     | 159.937                            | 165.000                        | 160.130                                                   |                             |                              |  |
| PM 160100 HX |         |                | 100.50<br>99.50  |                                     |                                    |                                |                                                           | 0.343                       |                              |  |
| PM 17050 HX  |         |                | 50.50<br>49.50   |                                     |                                    |                                |                                                           | 0.130                       |                              |  |
| PM 17060 HX  | 470     | 475            | 60.50<br>59.50   |                                     | 170.000                            | 175.040                        | 170.280                                                   |                             |                              |  |
| PM 17080 HX  | 170     | 175            | 80.50<br>79.50   |                                     | 169.937                            | 175.000                        | 170.130                                                   |                             |                              |  |
| PM 170100 HX |         |                | 100.50<br>99.50  |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 18050 HX  |         |                | 50.50<br>49.50   |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 18060 HX  | 180     | 185            | 60.50<br>59.50   |                                     | 180.000                            | 185.046                        | 180.286                                                   | 0.349                       |                              |  |
| PM 18080 HX  | 100     | 105            | 80.50<br>79.50   |                                     | 179.937                            | 185.000                        | 180.130                                                   | 0.130                       |                              |  |
| PM 180100 HX |         |                | 100.50<br>99.50  |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 19050 HX  |         |                | 50.50<br>49.50   |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 19060 HX  |         | 90 195         |                  | 60.50<br>59.50                      |                                    |                                |                                                           |                             |                              |  |
| PM 19080 HX  | 190     |                | 80.50<br>79.50   |                                     | 190.000<br>189.928                 | 195.046<br>195.000             | 190.286<br>190.130                                        |                             |                              |  |
| PM 190100 HX |         |                |                  | 100.50<br>99.50                     | 2.435                              |                                |                                                           |                             |                              |  |
| PM 190120 HX |         |                | 120.50<br>19.50  | 2.380                               |                                    |                                |                                                           |                             | -                            |  |
| PM 20050 HX  |         |                | 50.50<br>49.50   |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 20060 HX  |         |                | 60.50<br>59.50   |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 20080 HX  | 200     | 205            | 80.50<br>79.50   |                                     | 200.000<br>199.928                 | 205.046<br>205.000             | 200.286<br>200.130                                        |                             |                              |  |
| PM 200100 HX |         |                | 100.50<br>99.50  |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 200120 HX |         |                | 120.50<br>119.50 |                                     |                                    |                                |                                                           | 0.358                       |                              |  |
| PM 22050 HX  |         |                | 50.50<br>49.50   |                                     |                                    |                                |                                                           | 0.130                       |                              |  |
| PM 22060 HX  |         |                | 60.50<br>59.50   |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 22080 HX  | 220     | 225            | 80.50<br>79.50   |                                     | 220.000<br>219.928                 | 225.046<br>225.000             | 220.286<br>220.130                                        |                             |                              |  |
| PM 220100 HX |         |                | 100.50<br>99.50  |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 220120 HX |         |                | 120.50<br>119.50 |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 24050 HX  |         |                | 50.50<br>49.50   |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 24060 HX  | 240 245 | 60.50<br>59.50 |                  |                                     |                                    |                                |                                                           |                             |                              |  |
| PM 24080 HX  |         | 80.50<br>79.50 |                  | 240.000<br>239.928                  | 245.046 240.286<br>245.000 240.130 |                                |                                                           |                             |                              |  |
| PM 240100 HX |         |                | 100.50<br>99.50  | 0                                   |                                    |                                |                                                           |                             |                              |  |
| PM 240120 HX |         |                | 120.50<br>119.50 |                                     |                                    |                                |                                                           |                             | sions in mm                  |  |

| Part No.     |         | ninal<br>ze                         | Length<br>B                       | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> h8 | Housing-ø<br>D <sub>H</sub> H7 | Bush i-ø<br>D <sub>1a</sub> when<br>ass. in H7<br>housing | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |
|--------------|---------|-------------------------------------|-----------------------------------|-------------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|
|              | Di      | Do                                  | max.<br>min.                      | max.<br>min.                        | max.<br>min.                 | max.<br>min.                   | max.<br>min.                                              | max.<br>min.                |                              |
| PM 25050 HX  |         |                                     | 50.50<br>49.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 25060 HX  |         |                                     | 60.50<br>59.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 25080 HX  | 250     | 255                                 | 80.50<br>79.50                    |                                     | 250.000<br>249.928           | 255.052<br>255.000             | 250.292<br>250.130                                        | 0.364<br>0.130              |                              |
| PM 250100 HX |         | 100.50<br>99.50<br>120.50<br>119.50 |                                   |                                     |                              |                                |                                                           |                             |                              |
| PM 250120 HX |         |                                     | 119.50                            |                                     |                              |                                |                                                           |                             |                              |
| PM 26050 HX  |         |                                     | 50.50<br>49.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 26060 HX  |         |                                     | 60.50<br>59.50                    | 260.000<br>259.919                  |                              |                                |                                                           |                             |                              |
| PM 26080 HX  | 260     | 265                                 | 80.50<br>79.50<br>100.50<br>99.50 |                                     |                              | 265.052<br>265.000             | 260.292<br>260.130                                        |                             |                              |
| PM 260100 HX |         |                                     |                                   |                                     |                              |                                |                                                           |                             |                              |
| PM 260120 HX |         |                                     | 120.50<br>119.50                  | 2.435                               |                              |                                |                                                           |                             | _                            |
| PM 28050 HX  |         |                                     | 50.50<br>49.50                    | 2.380                               |                              |                                |                                                           |                             |                              |
| PM 28060 HX  |         |                                     | 60.50<br>59.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 28080 HX  | 280     | 285                                 | 80.50<br>79.50                    |                                     | 280.000<br>279.919           | 285.052<br>285.000             | 280.292<br>280.130                                        | 0.373<br>0.130              |                              |
| PM 280100 HX |         |                                     | 100.50<br>99.50                   |                                     |                              |                                |                                                           |                             |                              |
| PM 280120 HX |         |                                     | 120.50<br>119.50                  |                                     |                              |                                |                                                           |                             |                              |
| PM 30050 HX  |         |                                     | 50.50<br>49.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 30060 HX  |         |                                     | 60.50<br>59.50                    |                                     |                              |                                |                                                           |                             |                              |
| PM 30080 HX  | 300 305 | 305                                 | 80.50<br>79.50                    |                                     | 300.000<br>299.919           | 305.052<br>305.000             | 300.292<br>300.130                                        |                             |                              |
| PM 300100 HX |         |                                     | 100.50<br>99.50                   |                                     |                              |                                |                                                           |                             |                              |
| PM 300120 HX |         |                                     | 120.50<br>119.50                  |                                     |                              |                                |                                                           |                             |                              |

# 10.2MB-HX cylindrical bushes



Dimensions and Tolerances according to ISO 3547 and GSP-Specifications

| Part No.   | -  | ninal<br>ze | Length<br>B    | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> [h8] | Housing-ø<br>D <sub>H</sub> [H7] | Bush i-ø<br>D <sub>1m</sub><br>machined<br>to H7 | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
|------------|----|-------------|----------------|-------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------|-----------------------------|------------------------------|----------------|----|----|----|----|----|----|----------------|----------------|------------------|------------------|------------------|--|--|
|            | Di | Do          | max.<br>min.   | max.<br>min.                        | max.<br>min.                   | max.<br>min.                     | max.<br>min.                                     | max.<br>min.                |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 0808 HX |    |             | 8.00<br>7.50   |                                     |                                |                                  |                                                  |                             |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 0810 HX | 8  | 3 10        | 10             | 10.00<br>9.50                       |                                | 7.960<br>7.938                   | 10.015<br>10.000                                 | 8.015<br>8.000              |                              | No hole        |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 0812 HX |    |             | 12.00<br>11.50 |                                     |                                |                                  |                                                  |                             |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1010 HX |    |             | 10.25<br>9.75  |                                     |                                |                                  |                                                  | 0.077<br>0.040              | 3                            |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1012 HX | 10 | 12          | 12.25<br>11.75 |                                     | 9.960                          | 12.018                           | 10.015                                           |                             | 5                            |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1015 HX | 10 | 12          | 15.25<br>14.75 |                                     | 9.938                          | 12.000                           | 10.000                                           |                             | 4                            |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1020 HX |    |             | 20.25<br>19.75 |                                     |                                |                                  |                                                  |                             | 4                            |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1210 HX |    |             |                |                                     |                                |                                  |                                                  | 10.25<br>9.75               |                              |                |    |    |    | 3  |    |    |                |                |                  |                  |                  |  |  |
| MB 1212 HX |    |             | 12.25<br>11.75 |                                     |                                |                                  |                                                  |                             | 5                            |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1215 HX | 12 | 14          | 14             | 14                                  | 14                             | 14                               | 14                                               | 14                          | 14                           | 14             | 14 | 14 | 14 | 14 | 14 | 14 | 15.25<br>14.75 | 1.108<br>1.082 | 11.950<br>11.923 | 14.018<br>14.000 | 12.018<br>12.000 |  |  |
| MB 1220 HX |    |             |                |                                     |                                |                                  |                                                  |                             |                              | 20.25<br>19.75 |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1225 HX |    |             | 25.25<br>24.75 |                                     |                                |                                  |                                                  |                             |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1415 HX |    |             | 15.25<br>14.75 |                                     |                                |                                  |                                                  | 0.095                       |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1420 HX | 14 | 16          | 20.25<br>19.75 |                                     | 13.950<br>13.923               | 16.018<br>16.000                 | 14.018<br>14.000                                 | 0.050                       | 4                            |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1425 HX |    |             | 25.25<br>24.75 |                                     |                                |                                  |                                                  |                             | -                            |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1510 HX |    | 15 17       | 10.25<br>9.75  |                                     |                                |                                  |                                                  |                             |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1512 HX | 15 |             | 12.25<br>11.75 |                                     | 14.950                         | 17.018                           | 15.018                                           |                             |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1515 HX | 15 |             | 15.25<br>14.75 |                                     | 14.923                         | 17.000                           | 15.000                                           |                             |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |
| MB 1525 HX |    |             |                | 25.25<br>24.75                      |                                |                                  |                                                  |                             |                              |                |    |    |    |    |    |    |                |                |                  |                  |                  |  |  |

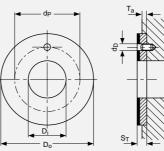
#### ID and OD chamfers

| S <sub>3</sub> | C <sub>o</sub> | Ci                  | S <sub>3</sub>          | Co          | C <sub>i</sub> |  |  |
|----------------|----------------|---------------------|-------------------------|-------------|----------------|--|--|
| 0.75           | max. 0.3*      | max. 0.3*           | 2                       | $1.2\pm0.4$ | $0.4\pm0.3$    |  |  |
| 1              | $0.6\pm0.4$    | max. 0.4*           | 2.5                     | $1.8\pm0.6$ | $0.6\pm0.4$    |  |  |
| 1.5            | $0.6\pm0.4$    | $0.4\pm0.3^{\star}$ | * alternatively rounded |             |                |  |  |

| Part No.   |       | ninal<br>ze    | Length<br>B    | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> [h8] | Housing-ø<br>D <sub>H</sub> [H7] | Bush i-ø<br>D <sub>1m</sub><br>machined<br>to H7 | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |  |  |  |  |  |
|------------|-------|----------------|----------------|-------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------|-----------------------------|------------------------------|--|--|--|--|--|
|            | Di    | Do             | max.<br>min.   | max.<br>min.                        | max.<br>min.                   | max.<br>min.                     | max.<br>min.                                     | max.<br>min.                |                              |  |  |  |  |  |
| MB 1615 HX |       |                | 15.25<br>14.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 1620 HX | 16    | 18             | 20.25<br>19.75 |                                     | 15.950<br>15.923               | 18.018<br>18.000                 | 16.018<br>16.000                                 |                             |                              |  |  |  |  |  |
| MB 1625 HX |       |                | 25.25<br>24.75 | 1.108                               |                                |                                  |                                                  | 0.095                       |                              |  |  |  |  |  |
| MB 1815 HX |       |                | 15.25<br>14.75 | 1.082                               |                                |                                  |                                                  | 0.050                       |                              |  |  |  |  |  |
| MB 1820 HX | 18    | 20             | 20.25<br>19.75 |                                     | 17.950<br>17.923               | 20.021<br>20.000                 | 18.018<br>18.000                                 |                             |                              |  |  |  |  |  |
| MB 1825 HX |       |                | 25.25<br>24.75 |                                     |                                |                                  |                                                  |                             | 4                            |  |  |  |  |  |
| MB 2010 HX |       |                | 10.25<br>9.75  |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2015 HX |       |                | 15.25<br>14.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2020 HX | 20    | 23             | 23             | 20.25<br>19.75                      |                                | 19.935<br>19.902                 | 23.021<br>23.000                                 | 20.021<br>20.000            |                              |  |  |  |  |  |
| MB 2025 HX |       |                | 25.25<br>24.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2030 HX |       |                | 30.25<br>29.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2215 HX |       |                |                |                                     |                                |                                  | 14.75                                            | 15.25<br>14.75              |                              |  |  |  |  |  |
| MB 2220 HX | 22    | 25             | 20.25<br>19.75 |                                     | 21.935                         | 25.021                           | 22.021                                           |                             |                              |  |  |  |  |  |
| MB 2225 HX |       | 22 25          | 25.25<br>24.75 | 1.608<br>1.576                      | 21.902                         | 25.000                           | 22.000                                           |                             |                              |  |  |  |  |  |
| MB 2230 HX |       |                | 30.25<br>29.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2415 HX |       |                | 15.25<br>14.75 |                                     | 23.935                         |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2420 HX | 24    | 27             | 20.25<br>19.75 |                                     |                                | 27.021<br>27.000                 | 24.021<br>24.000                                 |                             |                              |  |  |  |  |  |
| MB 2425 HX |       |                | 25.25<br>24.75 |                                     | 23.902                         |                                  |                                                  | 0.119<br>0.065              |                              |  |  |  |  |  |
| MB 2430 HX |       |                | 30.25<br>29.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2515 HX |       |                | 15.25<br>14.75 |                                     |                                |                                  |                                                  |                             | 6                            |  |  |  |  |  |
| MB 2520 HX | 25    | 28             | 20.25<br>19.75 |                                     | 24.935                         | 28.021                           | 25.021                                           |                             |                              |  |  |  |  |  |
| MB 2525 HX | 20    | -0             | 25.25<br>24.75 |                                     | 24.902                         | 28.000                           | 25.000                                           |                             |                              |  |  |  |  |  |
| MB 2530 HX |       |                | 30.25<br>29.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2820 HX |       |                | 20.25<br>19.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 2825 HX | 28 32 | 25.25<br>24.75 |                | 27.935<br>27.902                    | 32.025<br>32.000               | 28.021<br>28.000                 |                                                  |                             |                              |  |  |  |  |  |
| MB 2830 HX |       |                | 30.25<br>29.75 | 2.108                               |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 3020 HX | 30 34 | 20.25<br>19.75 | 2.072          |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |
| MB 3030 HX |       | 34             | 30.25<br>29.75 |                                     | 30.000<br>29.967               | 34.025<br>34.000                 |                                                  |                             |                              |  |  |  |  |  |
| MB 3040 HX |       |                | 40.25<br>39.75 |                                     |                                |                                  |                                                  |                             |                              |  |  |  |  |  |

# 10 Standard Products

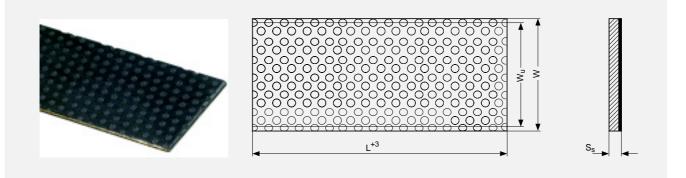
| Part No.   |      | ninal<br>ze | Length<br>B    | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> [h8] | Housing-ø<br>D <sub>H</sub> [H7] | Bush i-ø<br>D <sub>1m</sub><br>machined<br>to H7 | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
|------------|------|-------------|----------------|-------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------|-----------------------------|------------------------------|----|----------------|----|----|----|----|----|----|----|----|----------------|--|------------------|------------------|------------------|--|--|
|            | Di   | Do          | max.<br>min.   | max.<br>min.                        | max.<br>min.                   | max.<br>min.                     | max.<br>min.                                     | max.<br>min.                |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3220 HX |      |             | 20.25<br>19.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3230 HX | 32   | 36          | 30.25<br>29.75 |                                     | 31.920                         | 36.025                           | 32.025                                           |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3235 HX | 52   | 50          | 35.25<br>34.75 |                                     | 31.881                         | 36.000                           | 32.000                                           |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3240 HX |      |             | 40.25<br>39.75 |                                     |                                |                                  |                                                  |                             | 6                            |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3520 HX |      |             | 20.25<br>19.75 |                                     |                                |                                  |                                                  |                             | Ū                            |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3530 HX | 35   | 39          | 30.25<br>29.75 | 2.108                               | 34.920<br>34.881               | 39.025<br>39.000                 | 35.025<br>35.000                                 |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3550 HX |      |             | 50.25<br>49.75 | 2.072                               |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 3720 HX | 37   | 41          | 20.25<br>19.75 |                                     | 36.920<br>36.881               | 41.025<br>41.000                 | 37.025<br>37.000                                 |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4020 HX |      |             | 20.25<br>19.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4030 HX | 40   | 44          | 30.25<br>29.75 |                                     | 39.920                         | 44.025                           | 40.025                                           | 0.144<br>0.080              |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4040 HX |      |             | 40.25<br>39.75 |                                     | 39.881                         | 44.000                           | 40.000                                           |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4050 HX |      |             | 50.25<br>49.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4520 HX |      |             |                |                                     |                                |                                  |                                                  |                             |                              |    | 20.25<br>19.75 |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4530 HX |      |             | 30.25<br>29.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4540 HX | 45   | 50          | 50             | 50                                  | 50                             | 50                               | 50                                               | 50                          | 50                           | 50 | 50             | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 40.25<br>39.75 |  | 44.920<br>44.881 | 50.025<br>50.000 | 45.025<br>45.000 |  |  |
| MB 4545 HX |      |             | 45.25<br>44.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 4550 HX |      |             | 50.25<br>49.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5040 HX | 50   | 55          | 40.25<br>39.75 |                                     | 49.920                         | 55.030                           | 50.025                                           |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5060 HX |      |             | 60.25<br>59.75 |                                     | 49.881                         | 55.000                           | 50.000                                           |                             | 8                            |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5520 HX |      |             | 20.25<br>19.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5525 HX |      |             | 25.25<br>24.75 | 2.634<br>2.588                      |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5530 HX | 55   | 60          | 30.25<br>29.75 |                                     | 54.900                         | 60.030                           | 55.030                                           |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5540 HX |      |             | 40.25<br>39.75 |                                     | 54.854                         | 60.000                           | 55.000                                           |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5550 HX |      |             | 50.25<br>49.75 |                                     |                                |                                  |                                                  | 0.176                       |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 5560 HX |      |             | 60.25<br>59.75 |                                     |                                |                                  |                                                  | 0.100                       |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 6030 HX |      |             | 30.25<br>29.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 6040 HX | 60 6 | 65          | 40.25<br>39.75 |                                     | 59.900<br>59.854               | 65.030                           | 60.030<br>60.000                                 |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 6060 HX |      | 65          | 60.25<br>59.75 |                                     |                                | 65.000                           |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |
| MB 6070 HX |      |             | 70.25<br>69.75 |                                     |                                |                                  |                                                  |                             |                              |    |                |    |    |    |    |    |    |    |    |                |  |                  |                  |                  |  |  |


| Part No.    |     | ninal<br>ze              | Length<br>B              | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> [h8] | Housing-ø<br>D <sub>H</sub> [H7] | Bush i-ø<br>D <sub>1m</sub><br>machined<br>to H7 | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |
|-------------|-----|--------------------------|--------------------------|-------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------|-----------------------------|------------------------------|
|             | Di  | Do                       | max.<br>min.             | max.<br>min.                        | max.<br>min.                   | max.<br>min.                     | max.<br>min.                                     | max.<br>min.                |                              |
| MB 6540 HX  |     |                          | 40.25<br>39.75           |                                     |                                |                                  |                                                  |                             |                              |
| MB 6550 HX  | 05  | 70                       | 50.25<br>49.75           |                                     | 64.900                         | 70.030                           | 65.030                                           |                             |                              |
| MB 6560 HX  | 65  | 70                       | 60.25<br>59.75           |                                     | 64.854                         | 70.000                           | 65.000                                           |                             |                              |
| MB 6570 HX  |     |                          | 70.25<br>69.75           |                                     |                                |                                  |                                                  |                             |                              |
| MB 7040 HX  |     |                          | 40.25<br>39.75           |                                     |                                |                                  |                                                  |                             | 8                            |
| MB 7050 HX  |     |                          | 50.25<br>49.75           |                                     |                                |                                  |                                                  |                             |                              |
| MB 7065 HX  | 70  | 75                       | 65.25<br>64.75           |                                     | 69.900<br>69.854               | 75.030<br>75.000                 | 70.030<br>70.000                                 |                             |                              |
| MB 7070 HX  |     |                          | 70.25<br>69.75           |                                     |                                |                                  |                                                  | 0.176                       |                              |
| MB 7080 HX  |     |                          | 80.25<br>79.75           |                                     |                                |                                  |                                                  | 0.100                       |                              |
| MB 7540 HX  |     |                          | 40.25<br>39.75           |                                     |                                |                                  |                                                  |                             |                              |
| MB 7560 HX  | 75  | 80                       | 60.25<br>59.75           |                                     | 74.900<br>74.854               | 80.030<br>80.000                 | 75.030<br>75.000                                 |                             |                              |
| MB 7580 HX  |     |                          | 80.25<br>79.75           |                                     |                                |                                  |                                                  |                             |                              |
| MB 8040 HX  |     |                          | 40.50<br>39.50           |                                     |                                |                                  |                                                  |                             |                              |
| MB 8060 HX  | 80  | 85                       | 60.50<br>59.50           |                                     | 79.900                         | 85.035                           | 80.030                                           |                             |                              |
| MB 8080 HX  |     |                          | 80.50<br>79.50           | 2.634<br>2.568                      | 79.854                         | 85.000                           | 80.000                                           |                             |                              |
| MB 80100 HX |     |                          | 100.50<br>99.50          |                                     |                                |                                  |                                                  |                             |                              |
| MB 8530 HX  |     |                          | 30.50<br>29.50           | 2.300                               |                                |                                  |                                                  |                             |                              |
| MB 8540 HX  |     |                          | 40.50<br>39.50           |                                     |                                |                                  |                                                  |                             |                              |
| MB 8560 HX  | 85  | 90                       | 60.50<br>59.50           |                                     | 84.880<br>84.826               | 90.035<br>90.000                 | 85.035<br>85.000                                 |                             |                              |
| MB 8580 HX  |     |                          | 80.50<br>79.50           |                                     |                                |                                  |                                                  |                             |                              |
| MB 85100 HX |     |                          | 100.50<br>99.50          |                                     |                                |                                  |                                                  |                             | 9.5                          |
| MB 9040 HX  |     |                          | 40.50<br>39.50           |                                     |                                |                                  |                                                  |                             |                              |
| MB 9060 HX  | 90  | 95                       | 60.50<br>59.50           |                                     | 89.880<br>89.826               | 95.035<br>95.000                 | 90.035<br>90.000                                 |                             |                              |
| MB 9090 HX  |     |                          | 90.50<br>89.50<br>100.50 |                                     | 03.020                         | 33.000                           | 30.000                                           | 0.209<br>0.120              |                              |
| MB 90100 HX |     |                          | 99.50<br>60.50           |                                     |                                |                                  |                                                  | 0.120                       |                              |
| MB 9560 HX  | 95  | 100                      | 59.50<br>100.50          |                                     | 94.880<br>94.826               | 100.035<br>100.000               | 95.035<br>95.000                                 |                             |                              |
| MB 95100 HX |     |                          | 99.50<br>50.50           |                                     | 0                              |                                  | 00.000                                           |                             |                              |
| MB 10050 HX |     |                          | 49.50<br>60.50           |                                     |                                |                                  |                                                  |                             |                              |
| MB 10060 HX |     |                          | 59.50<br>80.50           |                                     | 99.880                         | 105.035                          | 100.035                                          |                             |                              |
| MB 10080 HX | 100 | 105                      | 79.50<br>95.50           |                                     | 99.880                         | 105.000                          | 100.000                                          |                             |                              |
| MB 10095 HX |     | 93.50<br>94.50<br>115.50 |                          |                                     |                                |                                  |                                                  |                             |                              |
| MB 100115HX |     |                          | 115.50                   |                                     |                                |                                  |                                                  |                             |                              |

# 10 Standard Products

| Part No.     |     | ninal<br>ze | Length<br>B                       | Wall<br>thickness<br>S <sub>3</sub> | Shaft-ø<br>D <sub>J</sub> [h8] | Housing-ø<br>D <sub>H</sub> [H7] | Bush i-ø<br>D <sub>1m</sub><br>machined<br>to H7 | Clearance<br>C <sub>D</sub> | Oil hole-ø<br>d <sub>L</sub> |  |  |
|--------------|-----|-------------|-----------------------------------|-------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------|-----------------------------|------------------------------|--|--|
|              | Di  | Do          | max.<br>min.                      | max.<br>min.                        | max.<br>min.                   | max.<br>min.                     | max.<br>min.                                     | max.<br>min.                |                              |  |  |
| MB 10560 HX  |     |             | 60.50<br>59.50                    |                                     |                                |                                  |                                                  |                             |                              |  |  |
| MB 105110 HX | 105 | 110         | 110.50<br>109.50                  |                                     | 104.880<br>104.826             | 110.035<br>110.000               | 105.035<br>105.000                               |                             |                              |  |  |
| MB 105115 HX |     |             | 115.50<br>114.50                  |                                     |                                |                                  |                                                  |                             |                              |  |  |
| MB 11060 HX  | 110 | 115         | 115                               | 115                                 | 60.50<br>59.50                 |                                  | 109.880                                          | 115.035                     | 110.035                      |  |  |
| MB 110115 HX |     | 110         | 115.50<br>114.50                  | 2.634                               | 109.826                        | 115.000                          | 105.000                                          | 0.209<br>0.120              | 9.5                          |  |  |
| MB 11550 HX  | 115 | 120         | 50.50<br>49.50                    | 2.568                               | 114.880                        | 120.035                          | 115.035                                          |                             | 0.0                          |  |  |
| MB 11570 HX  |     |             | 70.50<br>69.95                    |                                     | 114.826                        | 120.000                          | 115.000                                          |                             |                              |  |  |
| MB 12060 HX  | 120 | 125         | 60.50<br>59.50<br>100.50<br>99.50 |                                     | 119.880                        | 125.040                          | 120.035                                          |                             |                              |  |  |
| MB 120100 HX |     |             |                                   |                                     | 119.826                        | 125.000                          | 120.000                                          |                             |                              |  |  |
| MB 125100 HX | 125 | 130         | 100.50<br>99.50                   |                                     | 124.855<br>124.792             | 130.040<br>130.000               | 125.040<br>125.000                               |                             |                              |  |  |
| MB 13050 HX  |     |             | 50.50<br>49.50                    |                                     |                                |                                  |                                                  |                             |                              |  |  |
| MB 13060 HX  | 130 | 135         | 60.50<br>59.50                    |                                     | 129.855<br>129.792             | 135.040<br>135.000               | 130.040<br>130.000                               |                             |                              |  |  |
| MB 130100 HX |     |             | 100.50<br>99.50                   |                                     |                                |                                  |                                                  |                             |                              |  |  |
| MB 13560 HX  | 135 | 140         | 60.50<br>59.50                    |                                     | 134.855                        | 140.040                          | 135.040                                          |                             |                              |  |  |
| MB 13580 HX  |     |             | 80.50<br>79.50                    | 2.619                               | 134.792                        | 140.000                          | 135.000                                          | 0.248<br>0.145              | -                            |  |  |
| MB 14060 HX  | 140 | 145         | 60.50<br>59.50                    | 2.564                               | 139.855                        | 145.040                          | 140.040                                          |                             |                              |  |  |
| MB 140100 HX |     |             | 100.50<br>99.50                   |                                     | 139.792                        | 145.000                          | 140.000                                          |                             |                              |  |  |
| MB 15060 HX  |     |             | 60.50<br>59.50                    |                                     |                                |                                  |                                                  |                             |                              |  |  |
| MB 15080 HX  | 150 | 155         | 80.50<br>79.50                    |                                     | 149.855<br>149.792             | 155.040<br>155.000               | 150.040<br>150.000                               |                             |                              |  |  |
| MB 150100 HX |     |             | 100.50<br>99.50                   |                                     |                                |                                  |                                                  |                             |                              |  |  |

# 10.3HX Thrust Washers






| Part No. | Inside-ø<br>D <sub>i</sub> | Outside-ø<br>D <sub>o</sub> | Thickness<br>S <sub>T</sub> | Dowel hole<br>PCD-ø d <sub>P</sub> | Dowel hole-ø d <sub>D</sub> | Recess depth<br>T <sub>a</sub> |
|----------|----------------------------|-----------------------------|-----------------------------|------------------------------------|-----------------------------|--------------------------------|
| Part NO. | max.<br>min.               | max.<br>min.                | max.<br>min.                | max.<br>min.                       | max.<br>min.                | max.<br>min.                   |
| WC10HX   | 12.25<br>12.00             | 24.00<br>23.75              |                             | 18.12<br>17.88                     | 1.875<br>1.625              |                                |
| WC12HX   | 14.25<br>14.00             | 26.00<br>25.75              |                             | 20.12<br>19.88                     |                             |                                |
| WC14HX   | 16.25<br>16.00             | 30.00<br>29.75              |                             | 22.12<br>21.88                     | 2.375<br>2.125              |                                |
| WC16HX   | 18.25<br>18.00             | 32.00<br>31.75              |                             | 25.12<br>24.88                     |                             |                                |
| WC18HX   | 20.25<br>20.00             | 36.00<br>35.75              |                             | 28.12<br>27.88                     |                             |                                |
| WC20HX   | 22.25<br>22.00             | 38.00<br>37.75              | 1.577                       | 30.12<br>29.88                     | 3.375                       | 1.20                           |
| WC22HX   | 24.25<br>24.00             | 42.00<br>41.75              | 1.487                       | 33.12<br>32.88                     | 3.125                       | 0.95                           |
| WC24HX   | 26.25<br>26.00             | 44.00<br>43.75              |                             | 35.12<br>34.88                     |                             |                                |
| WC25HX   | 28.25<br>28.00             | 48.00<br>47.75              |                             | 38.12<br>37.88                     |                             |                                |
| WC30HX   | 32.25<br>32.00             | 54.00<br>53.75              |                             | 43.12<br>42.88                     |                             |                                |
| WC35HX   | 38.25<br>38.00             | 62.00<br>61.75              |                             | 50.12<br>49.88                     | 4.375                       |                                |
| WC40HX   | 42.25<br>42.00             | 66.00<br>65.75              |                             | 54.12<br>53.88                     | 4.125                       |                                |
| WC45HX   | 48.25<br>48.00             | 74.00<br>73.75              | 2.600                       | 61.12<br>60.88                     |                             | 1.70                           |
| WC50HX   | 52.25<br>52.00             | 78.00<br>77.75              | 2.510                       | 65.12<br>64.88                     |                             | 1.45                           |

#### 10 Standard Products

# 10.4HX Strip



| Group No.  | Length | Total width | Usable Width | Thickness<br>S <sub>S</sub> |
|------------|--------|-------------|--------------|-----------------------------|
|            | L      | W           | Wu           | max.<br>min.                |
| S100 90 HX |        | 102         | 93           | 1.07<br>1.03                |
| S152 00 HX | 500    | 210         | 200          | 1.56<br>1.52                |
| S202 00 HX | 500    |             | 240          | 2.05<br>2.01                |
| S252 00 HX |        | 227         | 218          | 2.57<br>2.52                |

Glacier Garlock Bearings warrants that products described in this brochure are free from defects in workmanship and material but unless expressly agreed in writing Glacier Garlock Bearings gives no warranty that these products are suitable for any particular purpose of for use under any specific conditions notwithstanding that such purpose would appear to be covered by this publication. Glacier Garlock Bearings accepts no liability for any loss, damage, or expense whatsoever arising directly or indirectly from use of its products. All business undertaken by Glacier Garlock Bearings is subject to its standard Conditions of Sale, copies of which are available upon request. Glacier Garlock Bearings products are subject to continual development and Glacier Garlock Bearings reserves the right to make changes in the specification and design of its products without prior notice.

GLACIER<sup>TM</sup> is a Trademark of the EnPro Industries Inc., USA.

 $Hi-eX^{TM}$  is a Trademark of the EnPro Industries Inc., USA.

DS<sup>TM</sup> is a Trademark of the EnPro Industries Inc., USA.

This handbook was designed by Profidoc Silvia Freitag

www.profidoc.de