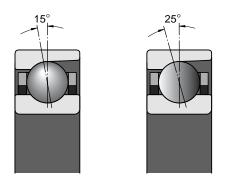
MRC


To meet the various demands with regard to running accuracy, speed capability, stiffness as well as load carrying capacity placed on precision bearing arrangements in an optimum manner, two different types of single row angular contact ball bearings are available from MRC:

- precision angular contact ball bearings
- hybrid precision angular contact ball bearings (with ceramic balls)

MRC precision angular contact ball bearings are non-separable and are essentially single row angular contact ball bearings. In all such bearings the load is transmitted from one raceway to another at an angle to the bearing axis. These bearings can therefore carry axial loads acting in one direction in addition to radial loads. Axial forces produced in the bearing when subjected to a radial load must be counteracted by an opposing force applied externally. The bearings are therefore adjusted against a second bearing.

The internal design of MRC precision angular contact ball bearings differs appreciably from that of standard single row bearings and reflects the latest state of the art where machine tool bearings are concerned. Only one flange on one ring has reduced height; the contact angles are small, and lightweight one-piece cages with a large number of balls are incorporated.

To meet the requirements of modern machine tool applications as fully as possible, MRC precision angular contact ball bearings are made in several series and designs. They are supplied in matched bearing sets. Bearing sets are used when the load carrying capacity of a single bearing is inadequate, or if axial loads acting in both directions have to be accommodated.

Precision Angular Contact Ball Bearings

MRC precision angular contact bearings are designed with either a 15° or 25° contact angle in order to meet specific machine tool spindle application requirements.

The 15° contact angle bearings are available in the 1900RDS, 100KRDS, 200RDS and 300RDS series, and have ample radial and axial load capacity for most applications, and have the ability to operate at very high speeds.

The 25° contact angle bearings are available in the 71900DS, 7100KRDS, and 7200DS series, can carry very high axial loads and provide ample axial stiffness.

All of the precision angular contact bearings shown in this catalog incorporate a light preload (GA). Many of the sizes listed are available from stock. Other sizes and preloads can be furnished upon request.

Matched Bearing Sets

All MRC precision angular contact ball bearings can be supplied as required in complete sets of two, three, four, and five matched bearings.

The bearings of a set are matched in production so that when they are mounted immediately adjacent to each other in the prescribed order, a given preload will be obtained or the load will be evenly distributed. The bore and outside diameters of the bearings of a set differ from each other by half the permissible diameter tolerance.

To facilitate correct mounting, the bearings of a matched set have a "V" marking on their outside cylindrical surface. The prescribed order must be adhered to if the set is to perform properly. The "V" marking also indicates how the set should be mounted in relation to the axial load. The point of the "V" indicates the direction in which the axial load should act on the center ring. Where axial load acts in both directions, the "V" indicates the direction of the greater axial load.

The bearings of a set are supplied in a unit package but are individually packed within the package.

Universal Bearings for Paired Mounting

These "universal" bearings are a special version of the precision bearings and are intended for paired mounting. They are adjusted during manufacture so that they may be mounted immediately adjacent to each other in a back-to-back, face-to-face or tandem arrangement as desired. When arranged back-to-back or face-to-face, the bearings will have a light preload.

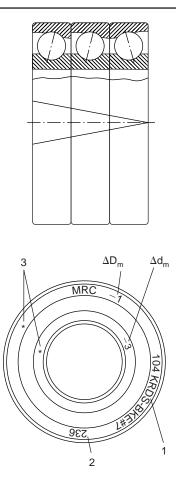
Bearings of universal design are identified by the designation suffix DS.

When ordering these bearings it should be remembered that the number of bearing pairs required should be stated, not the number of single bearings.

Tolerances

MRC precision angular contact bearings are manufactured to tolerances that meet the dimensional and running accuracy required in machine tool spindle applications. The tolerances are found in the table on page 24.

Each bearing of a matched set is marked, as illustrated in the adjacent figure, with the complete designation of the bearing set (1) and with the same consecutive number (2) on the face of the outer ring. The position of the greatest out-of-round is also marked on the inner and outer ring faces with an asterisk (3), i.e. the marking shows the greatest wall thickness between the base of the raceway groove and the bore or outside diameter surface. In addition, this position is also indicated by the "V" marking on the outer ring, which is always applied at this position. The actual values of the mean deviations from the nominal bore and outside diameters, Δd_m and ΔD_m respectively, are given on the rings and on the package (expressed in μ m).


Mounting Bearing Sets

When mounting bearing sets it should be remembered that the positions of greatest out-of-round on the inner rings should be lined up as well as those on the outer rings. As already mentioned, the order indicated by the "V" marking, and the direction should be adhered to.

Bearing arrangements with particularly high running accuracy can be obtained if the bearings are mounted so that the position of greatest out-of-round of the inner ring is opposite to the position of greatest out-of-round of the shaft. In arrangements where the bearing outer rings rotate, the greatest out-of-round of the outer ring should be diametrically opposed to that of the housing bore.

If spacer sleeves are to be mounted between the bearings of a matched set, sufficient accuracy will be obtained if the sleeves between the inner and outer rings have the same width and flat, parallel faces. This can be achieved by machining the sleeves together, e.g. on a lapping machine. It should be remembered that the order of the bearings indicated by the "V" should be maintained even when spacer sleeves are used.

Speed Ratings

The speed ratings quoted in the bearing tables are guideline values and are valid provided that the bearings are lightly loaded (P ≤ 0.06 C), are lightly preloaded by means of springs, and that good heat dissipation exists.

The values under oil lubrication are maximum values and should be reduced for certain other methods of oil lubrication. The values under grease lubrication are maximum values which can be attained using a good quality grease of soft consistency.

If single bearings have to be adjusted against each other to a greater degree to increase spindle stiffness, or if matched sets of two, three, four or five bearings are to be used, the limiting speed values given in the tables must be reduced. Reduction factors to obtain guideline values for the appropriate conditions are given in the table on page 19. The limiting speeds quoted in the bearing tables should be multiplied by these factors as appropriate. If the limiting speeds, from the table below, for matched bearing sets are inadequate, a simple design change—the inclusion of intermediate rings between the bearings will allow appreciable increases to be made. For sets of three bearings, for example, it should then be possible to run at the limiting speeds for paired bearings. Springs to preload the bearings may be beneficial. This type of preload is generally used for high speed operation in order to obtain an even preload over the whole operating range of the machine.

Reduction Factors for Limiting Speeds						
		Reduction F	actor			
	Preload					
Bearing Arrangement Light Medium Hea						
Set of two bearings arranged in tandem	0.90	0.80	0.65			
Sets of two bearings arranged back-to-back	0.80	0.70	0.55			
Sets of three bearings	0.70	0.55	0.35			
Sets of four bearings	0.65	0.45	0.25			
Sets of five bearings	0.60	0.40	0.20			

Cages

All MRC precision angular contact ball bearings are fitted with an outer ring centered cage of fabric reinforced phenolic resin. The cages are of a particularly light-weight design in order to keep centrifugal force at a minimum, and are designed to allow free passage of lubricant to the ball/raceway contacts.

Suffix Designations

MRC precision angular contact ball bearings are identified by the basic size number followed by the suffixes DS, BKE and #7, as shown in the bearing tables.

- DS a duplex single bearing having a light preload as standard.
- BKE an outer ring centered fabric reinforced phenolic resin cage also known as bake, or bakelite.
- #7 ABEC 7 tolerance grade.

Hybrid Precision Angular Contact Ball Bearings

MRC hybrid precision angular contact ball bearings are identical in design to precision bearings, but incorporate silicon nitride ceramic balls. Silicon nitride is a material that improves wear characteristics, is chemically inert in harsh conditions, and has electrical insulating properties. Compared to traditional all-steel bearings, the service life of hybrid bearings can be increased by as much as ten times.

The silicon nitride ceramic material demonstrates a good combination of stiffness, hardness, wear resistance and density. The ceramic balls have 60% lower density than steel balls so that the centrifugal forces in the bearing are much reduced. The lighter balls also cause less alteration of the contact angle and increase the dynamic accuracy of the bearing.

A 70% smaller thermal expansion than for steel balls considerably reduces the influence of temperature changes on the bearing preload. It is therefore possible for hybrid bearings to operate at speeds which are some 20% higher than for all-steel bearings without any risk of uncontrolled preload increases occurring.

The modulus of elasticity of the ceramic material is some 50% greater than for steel. Thus hybrid bearings are stiffer, by up to 20% at elevated speeds. Power losses are reduced by approximately 10% compared with all-steel bearings. Most of the precision angular contact bearings available from MRC, can be furnished with silicon nitride balls, made-to-order.

Preload

For single bearings, preload is obtained first after mounting and depends on adjustment against a second bearing which can accommodate axial loads acting in the opposite direction to those acting on the first bearing.

Matched sets of two bearings arranged back-to-back or face-to-face are supplied with a light preload (G_A) as standard. Other preloads can be furnished on request. The degree of actual preload depends on the bearing series, the contact angle and the bearing size. These preloads are quoted in the tables on page 22 and are nominal values for bearings arranged back-to-back or face-to-face before mounting.

Matched sets of three, four or five bearings in tandem/ back-to-back or tandem/face-to-face arrangements have greater preload than bearing pairs. The actual values can be obtained by multiplying the values given in the preload tables by the following factors:

1.35 triplex set

- 1.60 quad. set, 3DT + 1DB or DF
- 2.00 quad. set, One pair DT opposed by one pair DT
- 1.75 set of 5, 4DT + 1DB or \hat{DF}
- 2.45 set of 5, 3DT + 1Pair DB or DF

Preload of Mounted Bearings

The values of preload given in the tables on page 22 apply to bearing sets before mounting. When mounted, the bearing sets will always have a higher preload. This increase is mainly determined by the fits and the stiffness of the bearing seatings on the shaft and in the housing.

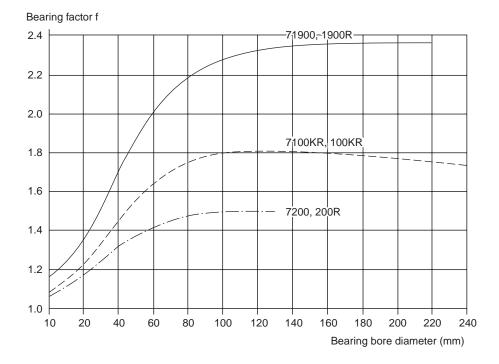
If the bearings are mounted with normal interference fits (shaft seating to tolerance js4 and housing seating to JS5) and the shaft is of steel and the housing of steel or cast iron, with a sufficiently thick wall, the preload of the

mounted bearing sets can be calculated with reasonable accuracy from the equation

$$G_m = f f_1 f_2 G_A$$

where

- G_m = preload of the mounted bearing sets, N
- G_A = preload of bearing sets before mounting, corresponding to tables, page 22
- f = bearing factor, see diagram opposite
- f_1 = correction factor depending on contact angle, see table opposite
- f_2 = correction factor depending on preload class, see table opposite


Example

Determine the mounted preload of the 7120KRDS - BKE#7 pair with a light preload (G_A) and mounted with a js4 shaft fit and a JS5 housing fit.

From the table on page 22, the value of G_A is 500 N. From the graph on the opposite page 21, f = 1.8, and from the table, $f_1 = 1.0$ and $f_2 = 0.92$. Then,

$$G_m = f f_1 f_2 G_A$$

 $G_m = 1.8 \times 1.0 \times 0.92 \times 500 = 828 N$
 $= 186 lbf$

Correction factors f_1 and f_2						
Light Preload (G _A)						
	Factors					
Bearing Series	f ₁	f ₂				
71900DS-BKE#7 1900RDS-BKE#7 7100KRDS-BKE#7 100KRDS-BKE#7 7200DS-BKE#7 200RDS-BKE#7	0.92 1 0.92 1 0.95 1	1 1 1 1 1				

Light Axial Preload (G_A) in Matched Sets of Angular Contact Bearings

MRC Machine Tools

							Bear	ing							
Dere Die		190	OOR	100	KR	20	OOR	3(DOR	71	900	710	OKR	7	200
Bore Dia mm	Size	N	lbf	N	lbf	N	lbf	N	lbf	N	lbf	N	lbf	N	lbf
10 12 15	00 01 02	10 10 15	2 2 3	15 15 20	3 3 5	20 20 30	5 5 7	40 60 90	10 15 20	15 15 25	3 3 6	25 25 30	6 6 7	35 35 45	8 8 10
17 20 25	03 04 05	15 25 25	3 6 6	25 35 35	6 6 8	35 45 50	8 10 11	110 155 180	25 35 40	25 35 40	6 8 10	40 50 60	10 11 13	60 70 80	13 16 18
30 35 40	06 07 08	25 35 45	6 8 10	50 60 60	11 13 13	90 120 150	20 27 34	245 310 380	55 70 85	40 60 70	10 13 16	90 90 100	20 20 22	150 190 240	43
45 50 55	09 10 11	50 50 70	11 11 16	110 110 150	25 25 34	160 170 210	36 38 47	445 620 710	100 140 160	80 80 120	18 18 27	170 180 230	38 40 52	260 260 330	
60 65 70	12 13 14	70 80 130	16 18 29	150 160 200	34 36 45	250 290 300	56 65 67	820	185	120 120 200	27 27 45	240 240 300	54 54 67	400 450 480	90 101 108
75 80 85	15 16 17	130 140 170	29 31 38	200 240 250	45 54 56	310 370 370	70 83 83			210 220 270	47 49 61	310 390 400	70 88 90	500 580 600	112 130 135
90 95 100	18 19 20	180 190 230	40 43 52	300 310 310	67 70 70	480 520 590	108 117 133			280 290 360	63 65 81	460 480 500	103 108 112	750 850 950	169 191 214
105 110 120	21 22 24	230 230 290	52 52 65	360 420 430	81 94 97	650 670 750	146 151 169			360 370 450	81 83 101	560 650 690	126 146 155	1000 1050 1200	225 236 270
130 140 150	26 28 30	350 360 470	79 81 106	560 570 650	126 128 146					540 560 740	121 126 166	900 900 1000	202 202 225		
160 170 180	32 34 36	490 500 630	110 112 142	730 800 900	164 180 202					800 800 1000	180 180 225	1150 1250 1450	259 281 326		
190 200 220	38 40 44	640 800 850	144 180 191	950 1100 1250	214 247 281					1000 1250 1300	225 281 292	1450 1750 2000	326 393 450		

Mounting Fits

The recommended shaft and housing bore diameters for precision angular contact bearings for machine tool spindle applications are shown in the table below, for a rotating shaft and stationary housing. The shaft tolerance is valid for both solid and hollow steel shafts.

	Shaft Limits								
Shaft [)iameter		js4 Tolerance						
	al (mm)	Millin	neter	In	ch				
Over	Incl.	High	Low	High	Low				
6 10 18	10 18 30	+.002 +.0025 +.003	002 0025 003	+.00008 +.0001 +.0001	00008 0001 0001				
30 50 80	50 80 120	+.0035 +.004 +.005	0035 004 005	+.00015 +.00015 +.0002	00015 00015 0002				
120 180	180 250	+.006 +.007	006 007	+.00025 +.0003	00025 0003				

	Housing Bore Limits										
Housing Diameter							Floating Bearing H5 Tolerance				
(mm)	r Nominai	Milli	neter	Inch		Mi	llimeter	In	ch		
Over	Incl.	High	Low	High	Low	High	Low	High	Low		
18 30 50	30 50 80	+.0045 +.0055 +.0065	0045 0055 0065	+.0002 +.0002 +.00025	0002 0002 00025	+.00 +.01 +.01	1 0	+.00035 +.00045 +.0005	0 0 0		
80 120 180	120 180 250	+.0075 +.009 +.010	0075 009 010	+.0003 +.00035 +.0004	0003 00035 0004	+ .01 + .01 + .02	8 0	+.0006 +.0007 +.0008	0 0 0		
250 315	315 400	+.0115 +.0125	0115 0125	+.00045 +.0005	00045 0005	+.02 +.02		+.0009 +.0010	0 0		

Tolerances in Inches (Shaded) and Millimeters										
Inner Ring										
Bore	Over	2.5	10	18	30	50	80	120	150	180
Diameter	Incl.	10	18	30	50	80	120	150	180	250
Bore	+.0000	00015	00015	0002	00025	0003	0003	0004	0004	00045
Diameter		004	004	005	006	007	008	010	010	012
Bore		.00005	.00005	.00005	.00005	.00008	.0001	.00025	.00025	.0003
Out-of-Round (Max)		.0013	.0013	.0013	.0013	.002	.0025	.006	.006	.007
Radial Runout		.00005	.00005	.0001	.0001	.0001	.0001	.00015	.00025	.0003
(Max)		.0013	.0013	.0025	.0025	.0025	.0025	.004	.006	.007
Width Variation		.00005	.00005	.00005	.00005	.00005	.0001	.00015	.00015	.0002
(Max)		.0013	.0013	.0013	.0013	.0013	.0025	.004	.004	.005
Side Runout		.00005	.00005	.00005	.00005	.00005	.0001	.00015	. 0002	.00025
With Bore (Max)		.0013	.0013	.0013	.0013	.0013	.0025	.004	.005	.006
Raceway Runout		.00005	.00005	.0001	.0001	.0001	.0001	.00015	.00025	.0003
With Side (Max)		.0013	.0013	.0025	.0025	.0025	.0025	.004	.006	.007
Ring Width	+.0000	0016	0031	0047	0047	—.0059	0079	0098	0098	0118
Single Bearing		040	080	120	120	—.150	200	250	250	300
Ring Width	+.0000	0098	0098	0098	0098	0098	0098	0150	0150	0197
Duplex Bearing		250	250	250	250	250	250	380	380	500
Outer Ring										
Outside	Over	18	30	50	80	120	150	180	250	315
Diameter	Incl	30	50	80	120	150	180	250	315	400
Outside	+.0000	0002	00025	0003	0003	00035	0004	00045	0005	0006
Diameter		005	006	007	008	009	010	011	013	015
Outside Diameter		.00008	.00008	.00008	.0001	.0001	.00025	.00025	.0003	.0003
Out-of-Round (Max)		.002	.002	.002	.0025	.0025	.006	.006	.008	.009
Radial Runout		.0001	.0001	.00015	.0002	.0002	.00025	.0003	.00035	.0004
(Max)		.0025	.0025	.0038	.005	.005	.006	.008	.009	.010
Width Variation (Max)		Identical to Inner Ring of Same Bearing								
O.D. Runout		.00005	.00005	.00005	.0001	.0001	.00015	.0002	.00025	.0003
With Side (Max)		.0013	.0013	.0013	.0025	.0025	.004	.005	.006	.008
Raceway Runout		.0001	.0001	.00015	.0002	.0002	.00025	.0003	.0003	.0004
With Side (Max)		.0025	.0025	.0038	.005	.005	.006	.008	.008	.010
Ring Width Single Bearing				Ident	ical to Inner Ri	ng of Same Re	earing			
Ring Width				TUGHL			Junny			

Ring Width Duplex Bearing

MRC

Equivalent Bearing Loads

In machine tool spindle applications, angular contact bearings are often subjected to combined radial and axial loads. In these cases it is necessary to calculate an equivalent load which will have the same influence on bearing life as the actual loads. The method used is shown below, and in tables at right.

Equivalent Dynamic Radial Load

$$P = X F_R + Y F_A \quad P = Equivalent dynamic radialloadF_R = Radial loadF_A = Thrust loadX = Radial load factor$$

Y = Thrust load factor

For single row angular contact bearings arranged singly or paired in tandem,

$P = F_R$	when $F_A/F_R \leq e$
$P = X F_R + Y F_A$	when $F_A/F_R > e$

For bearings paired back-to-back or face-to-face,

$P = F_R + Y_1 F_A$	when $F_A/F_R \leq e$
$P = X F_R + Y_2 F_A$	when $F_A/F_R > e$

Equivalent Static Radial Load

For single row angular contact bearings arranged singly or paired in tandem,

$$\begin{split} P_0 &= 0.5 \ F_R + Y_0 \ F_A \quad P_0 = \text{equivalent static radial load} \\ P_0 \ \text{is always} &\geq F_R \qquad Y_0 = \text{thrust load factor} \end{split}$$

For bearings paired back-to-back or face-to-face,

 $P_0 = F_R + Y_0 F_A$

Load Ratings for Bearing Sets

For bearing sets of two or more bearings, multiply the single bearing dynamic rating C in the bearing tables by the following factors:

- 1.62 for two bearings
- 2.16 for three bearings
- 2.64 for four bearings
- 3.08 for five bearings

For static ratings, multiply the single bearing rating $C_{\rm o}$ by the number of bearings in the set.

Load Carrying Capacity of Bearing Sets

Calculation Factors for Single Bearings and Bearings Paired in Tandem								
F_A/C_o	е	X	Y	Yo				
	Angle 15°	0.44	4.47	0.40				
≤0.015 0.029 0.058	0.38 0.40 0.43	0.44 0.44 0.44	1.47 1.40 1.30	0.46 0.46 0.46				
0.087 0.12 0.17	0.46 0.47 0.50	0.44 0.44 0.44	1.23 1.19 1.12	0.46 0.46 0.46				
0.29 ≥0.44	0.55 0.56	0.44 0.44	1.02 1.00	0.46 0.46				
Contact —	Angle 25° 0.68	0.41	0.87	0.38				

Calculation Factors for Bearings Paired Back-to-Back or Face-to-Face

$2F_a/C_o$	е	X	Y ₁	Y ₂	Yo
Contact	Angle 15°				
≤0.015	0.38	0.72	1.65	2.39	0.92
0.029	0.40	0.72	1.57	2.28	0.92
0.058	0.43	0.72	1.46	2.11	0.92
0.087	0.46	0.72	1.38	2.00	0.92
0.12	0.47	0.72	1.34	1.93	0.92
0.17	0.50	0.72	1.26	1.82	0.92
0.29	0.55	0.72	1.14	1.66	0.92
≥0.44	0.56	0.72	1.12	1.63	0.92
Contact	Angle 25°				
_	0.68	0.67	0.92	1.41	0.76

Life Rating

$$L10 = \left(\frac{C}{P}\right)^3 \text{ (millions of revolutions)}$$
or

$$L10h = \frac{10^6}{60n} \left(\frac{C}{P}\right)^3 (Hours)$$

For DB or DF Mounting:

- C = Duplex pair dynamic radial load rating (from duplex bearing tables) or
- C = Single-row dynamic radial load rating times (i)^{0.7}, where i = 2 (See Load Ratings for Bearing Sets)

For tandem mounting:

- C = Single-row dynamic radial load rating times (i)^{0.7}, where i = number of bearings in set (See Load Ratings for Bearing Sets)
- P = Dynamic equivalent radial load

$$n =$$
Speed in RPM

Dynamic and Static Equivalent Radial Load Calculation Examples

Bearing Size 7210DS

Single Bearing Dynamic

Case 1 $F_R = 2000$	Case 2 $F_R = 1000$
$F_{A} = 1000$	$F_{A} = 2000$
$F_A/F_R = 0.50$	$F_A/F_R = 2.0$
e = 0.68	e = 0.68
since $F_A/F_R \leq e$,	since $F_A/F_R > e$, $P = X F_R + Y F_A$
$P = F_R = 2000$	X = 0.41, Y = 0.87
	$P = 0.41 \times 1000 + 0.87 \times 2000 = 2150$

Paired Bearings Dynamic (DB OR DF)

Case 1 $F_{R} = 2000$	Case 2 $F_{R} = 1000$
$F_{A} = 1000$	$F_{A} = 2000$
$F_A/F_R = 0.50$	$F_A/F_R = 2.0$
e = 0.68	e = 0.68
since $F_A/F_R \leq e, P = F_R + Y_1 F_A$	since $F_A/F_R > e$, $P = X F_R + Y_2 F_A$
$Y_1 = 0.92$	$X = 0.67, Y_2 = 1.41$
$P = 2000 + 0.92 \times 1000 = 2920$	$P = 0.67 \times 1000 + 1.41 \times 2000 = 3490$

Single Bearing Static	Paired Bearings Static
$F_{R} = 1500$ $F_{A} = 1000$ $P_{0} = 0.5 F_{R} + Y_{0} F_{A}$ $Y_{0} = 0.38$ $P_{0} = 0.5 \times 1500 + 0.38 \times 1000 = 1130$ since P ₀ is always $\geq F_{R}$,	$F_{R} = 1000$ $F_{A} = 1500$ $P_{0} = F_{R} + Y_{0} F_{A}$ $Y_{0} = 0.76$ $P_{0} = 1000 + 0.76 \times 1500 = 2140$
$P_0 = 1500$	

Effect of Preload on Total Axial Force (F_A)

For bearing pairs under radial load and mounted with interference fits.

$$F_A = G_m$$

For bearing pairs under radial load and preloaded by springs,

$$F_A = G_A$$

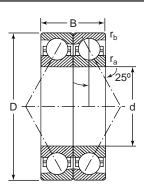
For bearing pairs under axial load and preloaded by springs,

 $F_A = G_A + K_a$

For bearing pairs under axial load and mounted with interference fits,

 $F_{A} = G_{m} + 0.67 K_{a}$ when $K_a \leq 3 G_m$ when $K_a > 3 G_m$ $F_A = K_a$

where


 F_A = axial component of bearing load

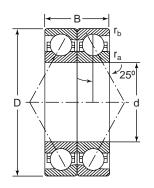
 G_A = preload of bearing pair from table on page 22

 G_m = preload in mounted pair, see page 20 K_a = external axial force acting on single bearing

Precision 25° Angular Contact 71900 DS-BKE#7 Series, Duplex

Load ratings are for single bearings. For sets of two or more see page 25 for the multiplying factor.

Speed ratings are for single bearings. For the speed reduction factor for sets of two or more, or tandem arrangements, see page 19.


<u>**Caution:**</u> Single bearings are not to be used where only radial loads are present. For two-direction thrust loads, use duplex bearings.

		Outside Fillet Radius ¹⁾								Basi	ic Radia					
MRC		Bore		Diameter		Width B					Dynamic C ²⁾			Static		Rating
Bearing Number	d		 mm in		mm			ra		in	C			C _o		0il RPM
71900DS-BKE#7 71901DS-BKE#7 71902DS-BKE#7	10 12 15	.3737 .4724 .5906	22 24 28	.8661 .9449 1.1024	12 12 14	.4724 .4724 .5512	.30 .30 .30	.012 .012 .012	.10 .10 .10 .10	.004 .004 .004	2420 2550 3770	544 573 847	1060 1180 1800	238 265 405	RPM 63000 56000 50000	95000 85000 75000
71903DS-BKE#7	17	.6693	30	1.1811	14	.5512	.30	.012	.10	.004	3970	892	2000	450	45000	67000
71904DS-BKE#7	20	.7874	37	1.4567	18	.7087	.30	.012	.15	.006	5720	1290	3050	686	38000	56000
71905DS-BKE#7	25	.9843	42	1.6535	18	.7087	.30	.012	.15	.006	6370	1430	3800	854	32000	48000
71906DS-BKE#7	30	1.1811	47	1.8504	18	.7087	.30	.012	.15	.006	6760	1520	4300	967	26000	40000
71907DS-BKE#7	35	1.3780	55	2.1654	20	.7874	.60	.024	.15	.006	9230	2070	6200	1390	22000	36000
71908DS-BKE#7	40	1.5748	62	2.4409	24	.9449	.60	.024	.15	.006	11700	2630	8000	1800	18000	30000
71909DS-BKE#7	45	1.7717	68	2.6772	24	.9449	.60	.024	.15	.006	12400	2790	9000	2020	17000	28000
71910DS-BKE#7	50	1.9685	72	2.8346	24	.9449	.60	.024	.15	.006	12700	2850	9800	2200	16000	26000
71911DS-BKE#7	55	2.1654	80	3.1496	26	1.0236	1.0	.040	.30	.012	18200	4090	13700	3080	15000	24000
71912DS-BKE#7	60	2.3622	85	3.3465	26	1.0236	1.0	.040	.30	.012	18600	4180	14600	3280	14000	22000
71913DS-BKE#7	65	2.5591	90	3.5433	26	1.0236	1.0	.040	.30	.012	19500	4380	16000	3600	13000	20000
71914DS-BKE#7	70	2.7559	100	3.9370	32	1.2598	1.0	.040	.30	.012	32500	7310	32500	7310	11000	18000
71915DS-BKE#7	75	2.9528	105	4.1339	32	1.2598	1.0	.040	.30	.012	33800	7600	35500	7980	10000	17000
71916DS-BKE#7	80	3.1496	110	4.3307	32	1.2598	1.0	.040	.30	.012	34500	7760	36500	8210	9500	16000

¹⁾ Fillet radius indicates maximum fillet radius on shaft or in housing which bearing corner will clear.

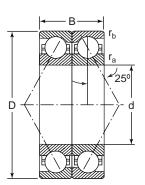
 $^{2)}$ Rating for one million revolutions or 500 hours at 33 $^{1\!/_{\! 3}}$ RPM.

Precision 25° Angular Contact 7100 KRDS-BKE#7 Series, Duplex

Load ratings are for single bearings. For sets of two or more see page 25 for the multiplying factor.

Speed ratings are for single bearings. For the speed reduction factor for sets of two or more, or tandem arrangements, see page 19.

<u>Caution</u>: Single bearings are not to be used where only radial loads are present. For two-direction thrust loads, use duplex bearings.


	0	itside		Fillet Radius ¹⁾						Radia						
MRC	B	lore d		meter D	W	idth B		ſa.			Dynan C ²⁾			ntic Co	Speed	Rating
Bearing Number	mm	in	mm	in			in	mm in			lbf	N	lbf	Grease RPM	0il RPM	
7100KRDS-BKE#7 7101KRDS-BKE#7 7102KRDS-BKE#7	10 12 15	0.3937 0.4724 0.5906	26 28 32	1.0236 1.1024 1.2598	16 16 18	0.63 0.63 0.7086	.30 .30 .30	0.012 0.012 0.012	.10	0.004 0.004 0.004	3970 4360 4940	892 980 1110	1600 1830 2320	360 411 522	56000 53000 45000	85000 80000 67000
7103KRDS-BKE#7 7104KRDS-BKE#7 7105KRDS-BKE#7	17 20 25	0.6693 0.7874 0.9843	35 42 47	1.378 1.6535 1.8504	20 24 24	0.7874 0.9448 0.9448	.30 .60 .60	0.012 0.024 0.024	.30	0.004 0.012 0.012	8320 1	1460 1870 2070	3100 4150 5000	697 933 1120	40000 34000 28000	60000 50000 43000
7106KRDS-BKE#7 7107KRDS-BKE#7 7108KRDS-BKE#7	30 35 40	1.1811 1.378 1.5748	55 62 68	2.1654 2.4409 2.6772	26 28 30	1.0236 1.1024 1.1812	1.0 1.0 1.0	0.04 0.04 0.04	.30	0.012 0.012 0.012	14800 3	3100 3330 3570	7650 9000 10400	1720 2020 2340	24000 19000 18000	38000 32000 30000
7109KRDS-BKE#7 7110KRDS-BKE#7 7111KRDS-BKE#7	45 50 55	1.7717 1.9685 2.1654	75 80 90	2.9528 3.1496 3.5433	32 32 36	1.2598 1.2598 1.4174	1.0 1.0 1.1	0.04 0.04 0.043	.30	0.012 0.012 0.024	28100 6	6070 6320 8340	21600 23200 31000	4860 5220 6740	16000 15000 14000	26000 24000 22000
7112KRDS-BKE#7 7113KRDS-BKE#7 7114KRDS-BKE#7	60 65 70	2.3622 2.5591 2.7559	95 100 110	3.7402 3.937 4.3307	36 36 40	1.4174 1.4174 1.5748	1.1 1.1 1.1	0.043 0.043 0.043	.60	0.024 0.024 0.024		8770 8770 1000	33500 35500 44000	7530 7980 9890	13000 12000 10000	20000 19000 17000
7115KRDS-BKE#7 7116KRDS-BKE#7 7117KRDS-BKE#7	75 80 85	2.9528 3.1496 3.3465	115 125 130	4.5276 4.9213 5.1181	40 44 44	1.5748 1.7322 1.7322	1.1 1.1 1.1	0.043 0.043 0.043	.60	0.024 0.024 0.024	49400 11 62400 14 63700 14	4000	46500 58500 62000	13200	9500 9000 8500	16000 15000 14000
7118KRDS-BKE#7 7119KRDS-BKE#7 7120KRDS-BKE#7	90 95 100	3.5433 3.7402 3.937	140 145 150	5.5118 5.7087 5.9055	48 48 48	1.8898 1.8898 1.8898	1.5 1.5 1.5	0.06 0.06 0.06	.60	0.024 0.024 0.024	74100 16 76100 17 79300 17	7100	72000 76500 80000	17200	8000 8000 7500	13000 13000 12000
7121KRDS-BKE#7 7122KRDS-BKE#7 7124KRDS-BKE#7	110	4.1339 4.3307 4.7244	160 170 180	6.2992 6.6929 7.0866	52 56 56	2.0472 2.2048 2.2048	2.0 2.0 2.0	0.08 0.08 0.08	1.0	0.04 0.04 0.04	90400 20 104000 23 111000 25	3400	93000 104000 116000	23400	7500 7000 6700	12000 11000 10000
7126KRDS-BKE#7 7128KRDS-BKE#7 7130KRDS-BKE#7	140	5.1181 5.5118 5.9055	200 210 225	7.814 8.2677 8.8583	66 66 70	2.5984 2.5984 2.756	2.0 2.0 2.1	0.08 0.08 0.083	1.0	0.04 0.04 0.04	140000 31 146000 32 163000 36	2800	150000 156000 180000	35100	6000 5600 5300	9000 8500 8000

¹⁾ Fillet radius indicates maximum fillet radius on shaft or in housing which bearing corner will clear.

 $^{2)}$ Rating for one million revolutions or 500 hours at 331/3 RPM.

Precision 25° Angular Contact 7200 DS-BKE#7 Series, Duplex

Load ratings are for single bearings. For sets of two or more see page 25 for the multiplying factor.

Speed ratings are for single bearings. For the speed reduction factor for sets of two or more, or tandem arrangements, see page 19.

<u>Caution:</u> Single bearings are not to be used where only radial loads are present. For two-direction thrust loads, use duplex bearings.

	Outoido							Fillet	Radius	1)	Bas	ic Radia				
MRC	Bore d		Outside Diameter D		Width B			a			Dynamic C ²⁾		Static Co		Speed Rating	
Bearing Number	mm	in	mm	in	mm	in	mm	a in	mm	in		lbf	N	lbf	Grease RPM	0il RPM
7200DS-BKE#7	10	0.3937	30	1.1811	18	0.7086	.60	0.024	.30	0.012	5200	1170	2120	477	53000	80000
7201DS-BKE#7	12	0.4724	32	1.2598	20	0.7874	.60	0.024	.30	0.012	5720	1290	2450	551	48000	70000
7202DS-BKE#7	15	0.5906	35	1.378	22	0.8662	.60	0.024	.30	0.012	7150	1610	3200	719	43000	63000
7203DS-BKE#7	17	0.6693	40	1.5748	24	0.9448	.60	0.024	.30	0.012	8840	1990	4000	899	38000	56000
7204DS-BKE#7	20	0.7874	47	1.8504	28	1.1024	1.0	0.04	.30	0.012	11400	2560	5600	1260	32000	48000
7205DS-BKE#7	25	0.9843	52	2.0472	30	1.1812	1.0	0.04	.30	0.012	13000	2920	6950	1560	26000	40000
7206DS-BKE#7	30	1.1811	62	2.4409	32	1.2598	1.0	0.04	.30	0.012	23400	5260	15300	3440	20000	34000
7207DS-BKE#7	35	1.378	72	2.8346	34	1.3386	1.1	0.043	.30	0.012	30700	6900	20800	4680	18000	30000
7208DS-BKE#7	40	1.5748	80	3.1496	36	1.4174	1.1	0.043	.60	0.024	39000	8770	27000	6070	16000	26000
7209DS-BKE#7	45	1.7717	85	3.3465	38	1.496	1.1	0.043	.60	0.024	41000	9220	30000	6740	15000	24000
7210DS-BKE#7	50	1.9685	90	3.5433	40	1.5748	1.1	0.043	.60	0.024	42300	9510	32500	7310	14000	22000
7211DS-BKE#7	55	2.1654	100	3.937	42	1.6536	1.5	0.06	.60	0.024	52700	11800	40500	9100	13000	20000
7212DS-BKE#7	60	2.3622	110	4.3307	44	1.7322	1.5	0.06	.60	0.024	63700	14800	50000	11200	11000	18000
7213DS-BKE#7	65	2.5591	120	4.7244	46	1.811	1.5	0.06	.60	0.024	72800	16400	57000	12800	10000	17000
7214DS-BKE#7	70	2.7559	125	4.9213	48	1.8898	1.5	0.06	.60	0.024	76100	17100	62000	13900	9500	16000

¹⁾ Fillet radius indicates maximum fillet radius on shaft or in housing which bearing corner will clear.
²⁾ Rating for one million revolutions or 500 hours at 33¹/₈ RPM.