

1 Attachment: Tables

1. Conversion from international system of units (SI)

Comparisons of SI, CGS, and engineering systems of units

Items System of units	Lengtl	n Mass	Time	Temperature	Acceleration	n Force	Stress	Pressure	Energy	Power
SI	m	kg	S	К, С	m/s²	N	Pa	Pa	J	W
CGS system	cm	9	s	ဗ	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Engineering system	m	kgf⋅s²/m	s	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf · m	kgf · m/s

	Co	onversion rat	es from SI system of	units	
Item	Sl unit		Units other than	n SI units	Conversion rate from SI unit
· · · · · · · · · · · · · · · · · · ·	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion are non or this
Angle	Radian	rad	Degree	٠	180/π
			Minute	,	10 800/π
			Second	"	648 000/π
Length	Meter	m	Micron	μ	10 ⁶
			Angstrom	Å	1010
Area	Square meter	mî	Are	a	10-2
			Hectare	ha	10⁻⁴
Volume	Cubic meter	m³	Liter	I, L	10³
			Deciliter	dl, dL	10⁴
Time	Second	S	Minute	min	1/60
			Hour	h	1/3 600
			Day	d	1/86 400
Numbers of vibration numbers of frequency	Hertz	Hz	Cycle	\$ ⁻¹	1.
Rotational speed	Times per second	S ⁻¹	Times per minute	rpm .	60
Velocity	Meter per second	m/s	Kilometer per hour	km/h	3 600/1 000
			Knot	kn	3 600/1 852
Acceleration	Meter per square second	m/s²	Gal	Gal	10²
			G	G .	1/9.806 65
Mass	Kilogram	kg	Ton	t	10-3
Force	Newton	N	Weight kilogram	kgf	1/9.806 65
			Weight ton	tf	1/ (9.806 65×10³)
			Dyne	dyn	10⁵
Torque and	Newton meter	N·m	Weight kilogram	kgf · m	1/9.806 65
moment of force			meter		
Stress	Pascal	Pa	Weight kilogram per square centimeter	kgf/cm²	1/ (9.806 65×10 ⁴)
	(Newtons per square meter)	(N/m²)	Weight kilogram per square millimeter	kgf/mm²	1/ (9.806 65×10°)

Prefixes for SI units

Powers of 10	Pre Name	fix Code	Powers of 10	Secretarial actions and the second	Prefix Name Code		
1018	exa	E	10-1	deci	d		
1015	peta	P	10-2	centi -	С		
1012	tera	Т	10−₃	milli	m		
10°	giga	G	10−6	micro	Д		
10 ⁶	mega	M	10⁻⁰	nano	n		
10³	kilo	k	10-12	pico	р		
10²	hecto	h	10-15	femto	f		
10 ¹	deca	da	10-18	atto	а		

Conversion rates from SI units (continued from previous page)

ltem	SI unit		Units other than	SÍ units	C	
цет	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from SI unit	
Pressure	Pascal	Pa	Weight kilogram per square mete	r kgf/m²	1/9.806 65	
	(newton per square meter)	(N/m^2)	Water column meter	mH₂O	1/ (9.806 65×10³)	
			Mercurial column millimeter	mmHg	760/ (1.013 25×10⁵)	
			Torr	Torr	760/ (1.013 25×10⁵)	
			Bar	bar	10-5	
			Atmosphere	atm	1/ (1.013 25×10 ⁵)	
Energy	Joule	J	Erg	erg	10 ⁷	
	(newton meter)	(N - m)	Calorie (international)	cal _⊓	1/4.186 8	
			Weight kılogram meter	kgf⋅m	1/9.806 65	
			Kilowatt hour	kW • h	1/ (3.6×10 ⁶)	
-			Metric horsepower/hour	PS⋅h	≈3.776 72×10 ⁻⁷	
Electric power,	Watt	W	Weight kilogram meter per second	kgf · m/s	1/9.806 65	
power	(joules per second)	(J/s)	Kilo calorie per hour	kcal/h	1/1.163	
			Metric horsepower	PS	≈1/735.498 8	
Viscosity, Viscosity index	Pascal second	Pars	Poise	Р	10	
Kinematic viscosity,	Square meter	m²/s	Stokes	St	10⁴	
Kinematic viscosity index	per second		Centistokes	cSt	10€	
emperature, Difference 1 temperature	Kelvin, Celsius degrees	к, ℃	Degree	°C	[See Note (1)]	
lectrical current, nagnetomotive force	Ampere	Α	Ampere	Α	1 :	
lectrical power, lectromotive force	Volt	· V	(Watt per ampere)	(W/A)	1	
Magnetic field intensity	Ampere per meter	A/m	Oersted	Oe	$4\pi/10^{3}$	
Magnetic flux density	Tesla	T	Gauss	Gs	10⁴	
			Gamma	Y	10°	
Electrical resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1	

Note (1) Conversion from TK to θ °C is: θ = T – 273.15. To indicate temperature difference: Δ T = Δ θ . Δ T and $\Delta \theta$ indicate temperature differences measured by Kelvin and Celsius respectively.

Remarks: Names and abbreviations of the unit in parentheses indicate the definition of the unit shown above the parentheses or left to the parentheses.

Conversion example 1N = 1/9.806 65 kgf

2. Conversion table between N and kgf

[How to read the table]

To convert 10N to kgf, locate 10 in the center column in the first block, Locate a corresponding kaf figure in the right side column. You will find 10N is 1.0197 kgf. To convert 10 kgf to N, locate a figure in N column to its left. You will find 10 kgf is 98.006N.

1 N =0.1019716 1 kgf =9.80665

kgf Ν

3. Conversion table between kg and lb

[How to read the table]

To convert 10 kg to lb, locate 10 in the center column in the first block. Locate a corresponding lb figure in right column. You will find 10 kg is 22.046 lb. To convert 10 lb to kg, locate the figure in the kg column to the left. You will find 10 lb is 4.536 kg.

1 kg =2.2046226

1 lb =0.45359237

lb
ka

	53534564.53	· · · · · · · · · · · · · · · · · · ·					7/28/2005				8.		Carlotte Constitution	{		ONE STATE OF	
N		kgf	N .		kgf	N		kgf	kg		lb	kg ·		lb	kg		lb
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321	0.454	1	2.205	15.422	34	74.957	30.391	67	147.71
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341	0.907	2	4.409	15.876	35	77.162	30.844	68	149.91
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360	1.361	3.	6.614	16.329	36	79.366	31.298	69	152.12
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380	1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400	2.268	5	11.023	17.237	38	83.776	32.205	71	156.53
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420	2.722	6	13.228	17.690	39	85.980	32.659	72	158.73
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439	3.175	7	15.432	18.144	40	88.185	33.112	73	160.94
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459	3.629	- 8	17.637	18.597	41	90.390	33.566	74	163.14
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479	4.082	9	19.842	19.051	42	92.594	34.019	75	165.35
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498	4.536	:10	22.046	19.504	43	94.799	34.473	76	167.55
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518	4.990	્ર11	24.251	19.958	44	97.003	34.927	77	169.76
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538	5.443	12	26.455	20.412	45	99.208	35.380	78	171.96
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558	5.897	13	28.660	20.865	46	101.41	35.834	79	174.17
137.29	14	1.4279	460.91	47	4.7927	784.53	80	8.1577	6.350	14	30.865	21.319	47	103.62	36.287	80	176.37
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597	6.804	15	33.069	21.772	48	105.82	36.741	81	178.57
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617	7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
166.71	. 17	1.7335	490.33	50	5.0986	813.95	83	8.4636	7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656	8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676	8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696	9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715	9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735	9.979	22	48.502	24.948	55	121.25	39.916	88	194.01
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755	10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
235.36	24	2.4473	558.98	> 57	5.8124	882.60	90	9.1774	10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794	11.340	25	55.116	26.308	- 58	127.87	41.277	91	200.62
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814	11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834	12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853	12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873	13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893	13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
											7-Line						
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912	14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932	14.515	32	70.548	29.484	65	143.30	44.452	98	216.05
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095	14.969	33	72.753	29.937	66	145.51	44.906	99	218.26

4. Conversion table of hardness

Rockwell C	, -	Brinell h	ardness	Rockwe A Scale	ell hardness B Scale	
Scale hardness	Vickers		Tungsten	Load 588.4N	Load 980 7N	Shore
(1 471N)	hardness	Standard ball	carbide ball	brale penetrator	Diameter 1.5888 mm {1/16 in} sphere	hardness
68	940	_		85.6	_	97
67	900		_	85.0		95
66	865	- '		84.5	_	92
65	832	_	739	83.9	_	91
64	800	_	722	83.4	— <u> </u>	88
63	772	_	705	82.8		87
62	746		688	82.3	—	85
61	720	_	670	81.8	_	83
60	697	_	654	81.2	· —	81
59	674		634	80.7	· · · · · · · · · · · · · · · · · · ·	80
58	653	_	615	80.1	- , ·	78
57	633	_	595	79.6	_	76
56	613	–	577	79.0	<u> </u>	75
55	595		560	78.5	. —	74
54	577	_	543	78.0		72
53	560		525	77.4	· · · —	71
52	544	500	512	76.8		69
51	528	487	496	76.3		68
50	513	475	481	75.9	.—	67
49	498	464	469	75.2	<u> </u>	66
48	484	451	455	74.7	—	64
47	471	442	443	74.1	_	63
46	458	432	432	73.6	 .,	62
45	446	421	421	73.1	<u> </u>	60
44	434	409	409	72.5	· · ·	58
43	423	400	400	72.0	-	57
42	412	390	390	71.5		56
41	402	381	381	70.9		55
40	392	371	371	70.4	·	54
39	382	362	362	69.9	,· —	52

Rockwell C		Brinell h	ardness	Rockwo A Scale	ell hardness	
Scale hardness	Vickers hardness	Standard ball	Tungsten carbide ball	Load 588.4N	B Scale Load 980.7N	Shore hardness
			carbide ball	brale penetrator	Diameter 1.5888 mm {1/16 in} sphere	
38	372	353	353	69.4	—·	51
37	363	344	344	68.9		50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
' 28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212		95.5	32
(14)	213	203	203		93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(8)	188	179	179	_	89.5	27
(6)	180	171	171	<u> </u>	87.1	26
(4)	173	165	165	_	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	_	81.7	24

5. Deviations of shafts used in common fits

Classifica diameter Over		d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
3 6 10 18 30 50	6 10 18 30 50 80	- 30 - 38 - 40 - 49 - 50 - 61 - 65 - 78 - 80 - 96 - 100 - 119	- 20 - 28 - 25 - 34 - 32 - 43 - 40 - 53 - 50 - 66 - 60 - 79	- 10 - 18 - 13 - 22 - 16 - 27 - 20 - 33 - 25 - 41 - 30 - 49	- 4 - 9 - 5 - 11 - 6 - 14 - 7 - 16 - 9 - 20 - 10 - 23	- 4 - 12 - 5 - 14 - 6 - 17 - 7 - 20 - 9 - 25 - 10 - 29	0 -5 -6 -0 -8 -9 -11 0 -13	- 8 - 9 - 0 - 11 - 0 - 13 - 16 - 0 - 19	0 -12 0 -15 -18 0 -21 0 -25 0 -30	0 - 18 - 22 - 27 - 33 - 39 - 39	0 - 30 - 36 - 43 - 52 - 62 - 74	0 - 48 - 58 - 70 - 70 - 84 - 100 - 120	± 2.5 ± 3 ± 4 ± 4.5 ± 5.5 ± 6.5 ± 7.5	± 4 ± 4.5 ± 5.5 ± 6.5 ± 8 ± 9.5
120	180	-142 -145 -170	- 94 - 85 110	- 58 - 43 - 68	-14 -32	- 34 - 14 - 39	0 -18	-22 0 -25	-35 -0 -40	- 54 - 63	- 87 -100	-140 -0 -160	± 9	±12.5
180	250	170 199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 29	0 -46	- 72	0 -115	0 -185	±10	±14.5
250	315	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 -52	0 - 81	0 -130	0 -210	±11.5	±16
315	400	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 -36	0 -57	- 89	0 -140	0 -230	±12.5	±18
400	500	-230 -270	135 175	- 68 108	-20 -47	- 20 - 60	0 -27	0 -40	0 -63	- 97	0 155	0 250	±13.5	±20
500	630	-260 -304	-145 -189	- 76 -120		- 22 - 66	_	0 -44	0 -70	-110	0 175	0 -280	_	±22
630	800	-290 -340	-160 -210	- 80 -130		- 24 - 74		0 -50	-80 -80	0 -125	-200	-320	_	±25
800	1000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	-	0 -56	-90	0 -140	0 -230	0 -360	-	±28
1000	1250	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	1	0 66	0 105	0 -165	0 -260	0 -420	_	±33
1250	1600	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 -195	-310	-500	_	±39
1600	2000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 -150	0 -230	0 -370	0 -600	_	±46

	U	III.	μ	F F
_				

													Unit: μ n
j5	j6	j7	k5	k6	k7.	m5	m6	n6	p6	r6	r7	Classifi diamete Over	cation of er (mm) or less
+ 3 - 2	+ 6 - 2	+ 8 - 4	+ 6 + 1	+ 9 + 1	+13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6
+ 4 - 2	+ 7	+10 - 5	+ 7 + 1	+10 + 1	+16 + 1	+12 + 6	+ 15 + 6	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10
+ 5	+ 8 - 3	+12 - 6	+ 9 + 1	+12 + 1	+19 + 1	+15 + 7	+ 18 + 7	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18
+ 5 - 4	+ 9 - 4	+13 - 8	+11 + 2	+15 + 2	+23 + 2	+17 + 8	+ 21 + 8	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30
+ 6 - 5	+11 - 5	+15 -10	+13 + 2	+18 + 2	+27 + 2	+20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50
+ 6	+12	+18	+15	+21	+32	+24	+ 30	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65
_ 7 	- 7	-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80
+ 6	+13	+20	+18	+25	+38	+28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100
- 9	- 9	- 15	+ 3	+ 3	+ 3	+13	+ 13	+ 23	+ 37	+ 76 + 54	+ 89 + 54	100	120
									,	+ 88 + 63	+103 + 63	120	140
+ 7 -11	+14 -11	+22 -18	+21 + 3	+28 + 3	+43 + 3	+33 +15	+ 40 + 15	+ 52 + 27	+ 68 + 43	+ 90 + 65	+105 + 65	140	160
										+ 93 + 68	+108 + 68	160	180
										+106 + 77	+123 + 77	180	200
.+ 7 −13	+16 -13	+25 -21	+24 + 4	+33 + 4	+50 + 4	+37 +17	+ 46 + 17	+ 60 + 31	+ 79 + 50	+109 + 80	+126 + 80	200	225
										+113 + 84	+130 + 84	225	250
+7	±16	±26	+27	+36	+56	+43	+ 52	+ 66	+ 88	+126 + 94	+146 + 94	250	280
-16	<u></u> - 10	±20	+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+130 + 98	+150 + 98	280	315
+7	±18	+29	+29	+40	+61	+46	+ 57	+ 73	+ 98	+144 +108	+165 +108	315	355
-18	±10	-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+150 +114	+171 +114	355	400
+7	±20	+31	+32	+45	+68	+50	+ 63	+ 80	+108	+166 +126	+189 +126	400	450
-20		-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+172 +132	+195 +132	450	500
				+44	+70	·	+ 70	+ 88	+122	+194 +150	+220 +150	500	560
			<u> </u>	0	0		+ 26	+ 44	+ 78	+199 +155	+225 +155	560	630
				+50	+80		+ 80	+100	+138	+225 +175	+255 +175	630	710
				0	Ó	_	+ 30	+ 50	+ 88	+235 +185	+265 +185	710	800
				+56	+90		+ 90	+112	+156	+266 +210	+300 +210	800	900
				0,	0	_	+ 34	+ 56	+100	+276 +220	+310 +220	900	1000
				+66	+105		+106	+132	+186	+316 +250	+355 +250	1000	1120
				0	0	•	+ 40	+ 66	+120	+326 +260	+365 +260	1120	1250
				+78	+125		+126	+156	+218	+378 +300	+425 +300	1250	1400
_	_	_	_	0	0	_	+ 48	+ 78	+140	+408 +330	+455 +330	1400	1600
				+92	+150	20	+150	+184	+262	+462 +370	+520 +370	1600	1800
_	_		_	0	0	_	+ 58	+ 92	+170	+492 +400	+550 +400	1800	2000
										1 700	1 400		

NSK

Unit: μ m

6. Deviations of holes used in common fits

	eation of er (mm) or less	E6	F6	F7	G6	G 7	Н6	H7	Н8	J6	J7	JS6	JS7
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11 0	+ 18 0	+ 27 0	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13 0	+ 21 0	+ 33 0	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16 0	+ 25 0	+ 39 0	+10 - 6	+14 -11	± 8	±12.5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19 0	+ 30	+ 46 0	+13 - 6	+18 -12	± 9.5	±15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22 0	+ 35 0	+ 54 0	+16 - 6	+22 -13	±11	±17.5
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40 0	+ 63 0	+18 - 7	+26 -14	±12.5	±20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29 0	+ 46 0	+ 72 0	+22 - 7	+30 -16	±14.5	±23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32 0	+ 52 0	+ 81 0	+25 - 7	+36 -16	±16	±26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36 0	+ 57 0	+ 89	+29 - 7	+39 -18	±18	±28.5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40 0	+ 63	+ 97 0	+33 - 7	+43 -20	±20	±31.5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44 0	+ 70	+110 0	-	_	±22	±35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50 0	+ 80	+125 0	_	_	±25	±40
800	1000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90 0	+140 0	_	_	±28	±45
1000	1250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66 0	+105 0	+165 0			±33	±52.5
1250	1600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125 0	+195 0		_	±39	±62.5
1600	2000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92 0	+150 0	+230 0	_	_	±46	±75
2000	2500	+370 +260	+240 +130	+305 +130	+144 + 34	+209 + 34	+110 0	+175 0	+280 0		_	±55	±87.5

K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	. P7		Classification of diameter (mm) Over or less	
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	- 18 ¹	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18	
+ 1 - 8	+ 2 -11	+ 6 - 15	- 5 -14	- 4 - 17	- 0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30	
+ 2 - 9	+ 3 -13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50	
+ 3 -10	+ 4 -15	+ 9 - 21	- 6 -19	- 5 - 24	- 30 - 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80	
+ 2 -13	+ 4 -18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	-18 -33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120	
+ 3 -15	+ 4 -21	+ 12 - 28	- 9 -27	- 8 - 33	- 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180	
+ 2 -18	+ 5 -24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250	
+ 3 -20	+ 5 -27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315	
+ · 3 -22	+ 7 -29	+ 17 - 40	-14 -39	- 10 - 46	0 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400	
+ 2 -25	+ 8 -32	+ 18 - 45	-16 -43	- 10 - 50	- 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500	
	0 -44	0 - 70	-	- 26 - 70	- 26 - 96		- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630	
_	0 -50	- 80		- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800	
	0 -56	- 90		- 34 - 90	- 34 -124	_	- 56 -112	- 56 -146	-100 -156	-100 -190	800	1000	
_	0 -66	0 -105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	120 225	1000	1250	
_	0 -78	0 125	-	- 48 -126	- 48 -173		- 78 -156	- 78 -203	-140 -218	-140 -265	1250	1600	
_	0 -92	0 150		- 58 -150	- 58 -208		- 92 -184	- 92 -242	-170 -262	-170 -320	1600	2000	
	0 -110	0 175	_	- 68 -178	- 68 -243	_	-110 -220	-110 -285	-195 -305	-195 -370	2000	2500	