

Part of worldwide Ingersoll Rand

SPHERICAL ROLLER BEARINGS 800 Series

for vibrating applications

Effortless Performer

INTRODUCTION

SNR and Torrington are leading bearing manufacturers with a reputation for design innovation allied to creative research and development programmes.

In terms of product; SNR are specialists in the manufacture of ball, roller and thrust bearings, automotive bearings, machine tool and aerospace bearings; Torrington are specialists in the manufacture of needle bearings, spherical and roll neck bearings, steering columns and associated components, machine tool and aerospace bearings. Within the UK the interests of both SNR and Torrington are represented by Nadella UK-who provide sales, marketing and engineering facilities.

Specifically, the 800 self-aligning Spherical Roller Bearings are designed for use within vibrating equipment - often destined for arduous conditions where exceptional radial and impact loads prevail and where high rotational speeds might well combine with misalignment to create severe operational conditions.

APPLICATION

Designated F800 by SNR and W800 by Torrington, these Spherical Roller Bearings have evolved from proven bearing design - for situations where heavy radial loads and higher than normal operational temperatures are likely - typically such applications include construction industry machinery and equipment, finishing mills, etc.

PRINCIPLE

At the heart of the 800 Series is an improved roller cage. Of one-piece design, this ensures minimal operational resonance and being machined bronze this also offers an inherent resistance to vibration, thereby helping to provide correct guidance to the contained rollers. Further the cage is centred on the rollers and this arrangement helps to reduce the detrimental effect of thermal expansion to an absolute minimum.

The inner ring is also provided with two solid shoulders, to supplement roller guidance and ultimately ensure maximum bearing/shaft abutment.

Finally, the bore and outside diameter tolerance has been so designed to withstand conditions of incessant and extreme circumstances of vibration whilst allowing total interchangeability.

NOTE: The 800 Series is normally manufactured to provide a greater internal radial clearance - tighter versions are also available upon request.

LUBRICATION

The 800 Series are normally supplied dry, ie with a compatible preservative oil but without lubricant, to more easily allow adoption of the preferred lubrication method:

- Oil Bath this lubrication method allows for higher rotational speeds with the facility to monitor and regulate operational bearing temperature.
- Grease this lubrication method, which allows for moderate rotational speeds, simplifies bearing installation and maintenance procedures.

It is important to note that if grease lubrication is to be used then, upon installation of the 800 Series bearings, the cavities between the rollers should be packed with grease prior to operation - thereafter the bearings should be regularly maintained.

NOTE: Either of the above methods may be satisfactorily adopted by use of the SNR High Performance Automatic Lubrication Unit - details of which are available upon request.

OPERATION

The following configurations are examples of vibrating applications likely to be encountered in utilising the 800 Series Spherical Roller Bearings:

• Single Shaft/Two Bearings/Circulating Oil Lubrication

Single shaft units are designed with an eccentric portion to provide out of balance movement, with one bearing at each end of the shaft. The bearing at the drive end is allowed to float whilst the other bearing is fixed.

This unit is shown with a circulating oil system. It is used where rotational speeds are excessive, the oil not only provides lubrication for the bearings but also acts as a coolant.

Double Shaft/Four Bearings/Splash Oil Lubrication

This design features two contra-rotating eccentric shafts geared synchronously. Bearings at the geared end of the shafts (not shown) are fixed to provide location. Those at the drive end are allowed to float to compensate for shaft expansion and contraction.

The vibrating movement agitates the oil to supply the bearings. The oil level can be easily checked with a sight gauge.

• Single Shaft/Four Bearings/Grease Lubrication

This design uses four bearings on a single shaft. The two inner bearings being eccentric to the outer bearings. The outer bearings are mounted to the frame and the centre bearings are mounted to the screen bed, providing eccentric movement to the screen. Counterweights are normally used to counteract the forces of the screen bed, thereby reducing the load on the outer bearings.

Grease is normally acceptable when the speeds are moderate.

SELECTION GUIDE

References		Dime: r	nsions nm	Basic load (Ik	Basic load ratings (Ibs)			Abutment and fillet dimensions mm					
SNR (F)/TOR(W)	d	D	В	С	C ₀	*d3	MAXI	*D1 MINI	D1 MAXI	r1 MAXI			
22308F/w800 22309F/w800 22310F/w800 22311 F/w800 22312F/w800 22313F/w800 22314F/w800 22315F/w800 22316F/w800 22316F/w800 22319F/w800 22320F/w800 22322F/w800 22326 F/w800 22328F/w800 22328F/w800 22320F/w800 22320F/w800	40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150	90 100 110 120 130 140 150 160 170 180 190 200 215 240 260 280 300 320	33 36 40 43 46 48 51 55 58 60 64 67 73 80 64 67 73 80 86 93 102 108	29900 36500 44 100 52400 60700 65200 74200 86600 95600 104600 119 200 130500 146200 173 200 209 200 236 200 274 500 310500	33 100 40900 50800 59600 69700 74200 86600 102400 114700 126000 144000 157500 184500 213700 283 500 308 200 378 000 416200	1 1 1 1 1 1 1 1 1 1 1 1 1 1	54 61 67 73 79 87 93 0.00 0.5 1.3 1.8 2.5 8 2.5 8 5.8 7.3 85 957	80 90 98 107 116 126 135 144 153 162 171 180 193 216 233 251 269 288 288 286	83 93 101 111 120 130 140 150 160 168 178 188 203 228 248 248 265 285 305	$1.5 \\ 1.5 \\ 2.0 \\ 2.0 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.1 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 4.0 $			
22332F/W800 22334F/W800	160 170	340 360	114 120	346 500 398 200	448 200 555 700	2 2	07 18	306 324	325 345	4.0 4.0			

Recommended shoulder dimensions for easy removal. Some references may not be available yet. Please consult Nadella UK.

Clearance Reduced tolerance of radial internal clearance														
		Dime	Dimensions n mm											
Nom Above bore up to		30 40	40 50	50 65	65 80	80 100	100 120	120 140	140 160	160 180	180 200	200 225	225 250	250 280
with cylindrical bore														
		Clea	Clearance in microns											
Category F/W800 (J40/C4) Category F/W801 (J30/C3) Category F/W802 (JO/CO) with tapered bore (tap	min max min max min max er 1/12)	65 80 50 60 35 45	85 100 60 75 40 55	100 120 75 90 50 65	120 145 90 110 60 80	150 180 110 135 75 100	180 210 135 160 90 120	205 240 160 190 110 145	240 280 190 220 130 170	260 310 200 240 140 180	285 340 220 260 155 200	320 380 245 290 165 220	355 420 265 320 180 240	385 460 290 350 200 260
		CI	earance	in micr	ons									
Category KF/W800 (J40/C4) Category KF/W801 (J30/C3) Category KF/W802 (JO/CO)	min max min max min max	70 85 55 65 40 50	85 100 65 80 50 60	105 120 80 95 60 75	130 150 100 120 80 95	155 180 120 140 90 110	185 220 145 170 110 135	220 260 175 200 135 160	255 300 195 230 145 180	285 340 220 260 160 200	315 370 245 290 180 220	350 410 275 320 205 250	385 450 295 350 225 270	425 490 330 390 245 300

Tolerances	nner ri	ng - Re	educed	bore tole	erances					
	Dim	ension	s in mn	n						
Nom Abov	е	30	50	80	120	180	250			
bore up to		50	80	120	180	250	315			
Difference from nom. diameter (microns)										
Cylindrical	dm.d	-7	-9	-12	-15	-18	-21			
bore		0	0	0	0	0	0			
Tapered	d	0	0	0	0	0	0			
		+39	+46	+54	+63	+72	+81			
Width	В	0	0	0	0	0	0			
		-120	-150	-200	-250	-300	-350			

Tolerances Outer ring - Reduced OD tolerances											
Dimensions in mm											
Nom	Above	80	120	150	180	250	315	400	500		
OD	up to	120	150	180	250	315	400	500	630		
	Difference from nom. diameter (microns)										
OD		-5	-5	-5	-10	-10	-13	-13	-15		
	Dm.D	-13	-13	-18	-23	-23	-28	-30	-35		

The outer ring width tolerances are the same as the inner ring

To convert mm into inches

multiply the values in the table above by 0.03937 To convert microns into 0.0001 inch.

multiply the values in the table above by 0.3937

For more information about the SNR and Torrington 800 Series self-aligning Spherical Roller Bearings please contact Nadella UK

Whichever product attracts your interest, Whatever your specific needs may be, Whenever you need guaranteed quality, supply and service contact: NADELLA UK LIMITED, PROGRESS CLOSE, LEOFRIC BUSINESS PARK, BINLEY, COVENTRY CV3 2TF TELEPHONE: (0203) 233233 FAX: (0203) 233300 TELEX: 31 1035

Products described herein are subject to Nadella UK "Conditions of Sale". The right is reserved to change designs and specifications without notice.