

Mechanical linear drive units

WIESEL®

Linear to success.

Movement starts in the head and then has to be consistently turned into innovative product solutions of a high technical standard. As a first-class supplier of components for electrically powered linear technology, NEFF offers carefully designed standard products that can be flexibly modified to suit individual customer requirements. In-house development and research, design and production combined with total quality management guarantee that our versatile product range and complete accessory programme meet the highest possible standards. Our international sales division with the NEFF Business Service is always ready to help – consulting advice, helping with product selection and carrying out repairs – worldwide.

Contents

	NEFF WIESEL® linear drive units	4–11
NEW	Requirements and solutions	4–5
	Summary of performance data, additional options and accessories	8–9 10–11
	Mechanical linear drive units WIESEL SPEEDLine°	13–31
	New technology right to the core Ceneral technical data WH40/WH50/WH80/WH120 Guide tube versions WH750/WH780	14–15 16 17–20 21–22 23–24
	Accessories WIESEL SPEEDLine®	25–31
	Mechanical linear drive units WIESEL POWERLine, WIESEL DYNALine	33–63
	Applications for linear drive units	
	WM80 ZRT WIESEL POWERLine® with ball screw drive WM40 WM60-370 WM60	39 40–41 42 43 44
	WM60-500 WM80-370 WM80/WM120 Executions guide tube WV60/WV80/WV120	45 46 47–48 49–50 51–53
	Accessories WIESEL POWERLine®, WIESEL DYNALine®	54–63
	Mechanical linear drive units WIESEL VARIOLine®	64-71
NEW	Accessories VARIOLine®	66–67 68–71
	Mechanical linear drive units WIESEL® WO	72-81
	Accessories WIESEL® W00, W02	74–75 76–81
	Modular linear system WIESEL FORCELine®	82–96
NEW	MLSH 60 ZRT with toothed belt drive MLSM 60 KGT with ball screw drive Accessories WIESEL <i>FORCELine</i> [®]	86 87 88–96
	Drive technology 9	6–110
	Digital AC servo drives .9 Frequency convertors .10 Couplings	8–105 6–107 108 109
	Ceneral accessories 11	0–118
NEW	Inductive proximity switches	110 1-118
	Sizing and selection 11	9–122
	The NEFF CD-ROM Dynamic load rating for all NEFF linear drive units Drive selection for linear drive units with toothed belt drive Drive selection for linear drive units with ball screw drive	119 120 121 122
	Order information 12	3–126
	WIESEL SPEEDLine [®] WIESEL POWERLine [®] , WIESEL DYNALine [®] , WIESEL VARIOLine [®] WIESEL [®] WO, connecting elements WIESEL FORCELine [®]	123 124 125 126
DIN EN ISO 9001 Zertifikat: 01 100 6503	Inquiry data NEFF – worldwide distribution network NEFF <i>BUSINESS</i> Service	127 129 131

What are your requirements on a linear drive unit today?

Clocking, positioning, traversing, transporting, palletizing, moving ...

These are just some of the tasks that need linear drive units. Advances in technology and changes in the market are constantly creating new and different requirements for linear drive units. Besides technical requirements, economic aspects are becoming increasingly important. Manufacturers are faced with the following challenges: **How do I reach a higher cost effectiveness for my installation?** Despite the reduction in investments, handling plants have to become more and more productive. Shorter cycle times for the same price!

How can I make my plant more reliable? Components are expected to display greater reliability and ensure lower maintenance costs.

How can I reduce the effort required in purchasing, production and assembly? The number of suppliers and the variety of parts purchased must be reduced continually. This can only be achieved with the aid of modular concepts using high quality integrated modules.

The success is mainly influenced by the subassemblies used such as linear drive units.

NEFF linear drive units The ideal solution for your handling task

WIESEL® mechanical linear drive units have played a leading part in plant engineering for many years thanks to their innovative design details.

With its comprehensive product range, NEFF has the right linear drive unit in the right size for every application. All our linear drive units have a high-precision NEFF ball screw or toothed belt drive. The different types and sizes can be combined with suitable servo motors and servo amplifiers to implement single and multiple axis systems with complete drive packages.

The answer to your challenges:

NEFF linear drive units guarantee the optimum solution of technology and economy for every drive task due to their high load and moment carrying capability.

The uncompromising design of every NEFF linear drive unit and numerous innovative design characteristics guarantee reliable linear movement in your machinery and plant.

The high performance and modular design make it possible to replace a large number of individual components, thus permitting modular systems with lower costs and shorter lead times.

Mechanical linear drive units with toothed belt drive or ball screw drive

Mechanical linear drive units are used wherever loads have to be moved quickly, precisely and safely in linear direction. Single-axis solutions as well as two and three-dimensional handling systems can be realized. Different guide systems can be used for supporting the loads:

- simple sliding guideway
- sturdy roller guideway
- precise linear guideway
- heavy-duty ball recirculating guide

Characteristics of NEFF linear drive units

- Stroke lengths up to 11 m.
- Highly integrated technology allows the use of solutions with numerous individual components.
- The aluminum profile with its high torsional and bending strength enables stiff systems.
- Extensive and optimized accessories.
- The patented self-adjusting cover strip protects the drive.
- The patented screw supports at the ball screw drives allow high speeds also at long strokes.

Ball screw drive

The ball screw drive is used where high forces and precision at average speed is needed.

Technical features¹:

- max. speed 2.5 m/s
- min. repeatability²⁾ ± 0.01 mm res. ± 0.05 mm
- max. feed force 12 kN

Trapezoidal screw drive

The trapeziodal screw drive is used for applications with average requirements with respect to speed, force and precision and with a low duty cycle. Available for series W00, W02.

Technical features¹:

- max. speed 0.4 m/s
- min. repeatability ± 0.1 mm
- max. feed force 1.5 kN

Toothed belt drive

The toothed belt drive is used for applications that require high speeds at average force and precision.

Technical features¹:

- max. speed 10 m/s
- max. acceleration 40 m/s²
- min. repeatability ± 0.05 mm
- max. feed force 5 kN

^aRefering to NEFF linear drive units. ^aRefers to the average position variation according to VDI/DCQ 3444

NEW: WIESELFORCELine® Packs the power for mechanical engineering and handling

The new WIESEL FORCELine® is a modular linear-axis system of great stiffness, suitable for applications in mechanical engineering and the handling industry. The high power density makes the new WIESEL series a powerful drive element.

Two different drive and guide systems have been integrated in the

with a precise ball screw drive and extremely robust ball return duct or second a version with a drive through a dynamic ATL toothed belt and a robust roller guide. Both these axes have the same overall dimensions, which keeps design effort to a minimum.

Toothed belt drive with robust roller guide

torsion-resistant aluminium tubular section: optionally, a version

Pre-loaded ball screw drive with integrated ball recirculating guide system

Screw supports

The highly efficient ball recirculating guide system has been integrated in the profile at an angle of 45°. Together with the precise ball screw drive, this provides high power density and stiffness.

The patented cover strip is a reliable protection from dirt.

The robust roller guide has been

integrated in the profile at an

angle of 45°. Together with the

ATL toothed belt this guarantees

great dynamics.

The patented screw supports allow high speeds, and have been additionally optimised.

Equal outer dimensions

Both models have equal outer dimensions and therfore reduce the design expense.

The ball screw version can be conveniently lubricated via the central lubrication right on the sliding carriage. Maintenance whether manual or automatic is quite uncomplicated.

Cover strip

Selection of linear drive units

The best solution for every application

Fx– Feed forceRep.– Repeatabilityv– Linear speeda– Acceleration

1) The performance values of the respective sizes can be found on page 10

WIESEL Manager / CAD-data

Cet the software package WIESEL *Manager* for the choice and planning of all NEFF linear drive units as well as our CAD-data. Click to www.neffaa.de or send the order form on page 128. Also benefit from technical consultation service.

Summary of performance data, additional options and accessories

Summary of performance data

Туре	Profile- cross- section	Drive element ¹⁾	Lead [mm] Stroke per revolution [mm/rev.]	Feed force Fx [N]	Repea- tability ⁴⁾ [mm]	Linear speed [m/s]	Load ²⁾ Fz [N]	Other Fy [N]	loads a Mx [Nm]	nd mom My ³⁾ [Nm]	ents Mz ³⁾ [Nm]
WH40	40x40	ZRT ¹⁾ 10 AT5	100	315	± 0,05	3.0	600	450	10	30	30
WH50	50x50	ZRT ¹⁾ 16 ATL5	120	670	± 0.05	6.5	730	415	16	87	50
WH80	80x80	ZRT ¹⁾ 32 ATL10	200	2700	± 0.05	10	2100	882	75	230	100
WH120	120x110	ZRT ¹⁾ 50 ATL10	260	5000	± 0.05	10	9300	4980	500	930	500
WHZ50	50x50	ZRT ¹⁾ 16 ATL5	120	670	± 0.05	6.5	730	415	16	87	50
WHZ80	80x80	ZRT ¹⁾ 32 ATL5	200	1480	± 0.05	10	2100	882	75	230	100
WM60-370 ZRT	60x60	ZRT ¹⁾ 20 ATL5	120	850	± 0.05	2.5	1400	1400	25	50	50
WM80-370 ZRT	80x80	ZRT ¹⁾ 25 AT10	170	1470	± 0.05	2.5	2100	2100	68	135	135
WM80 ZRT	80x80	ZRT ¹⁾ 25 AT10	170	1470	± 0.05	2.5	3000	3000	150	300	300
WM40	40x40	KGT ¹⁾ Ø 12mm	5	1000	± 0.01	0.25	600	450	10	30	30
WM60-370	60x60	KGT ¹⁾ ø 20mm	5/20/50	2800	± 0.02	2.5	1400	1400	50	100	100
WM60	60x60	KGT ¹⁾ Ø 20mm	5/20/50	4000	± 0.01	2.5	2000	2000	100	200	200
WM60-500	60x60	KGT ¹⁾ Ø 20mm	5	4000	± 0.01	0.25	2000	2000	100	200	200
WM80-370	80x80	KGT ¹⁾ Ø 25mm	5/10/20/50	3500	± 0.02	2.5	2100	2100	150	180	180
WM80	80x80	KGT ¹⁾ Ø 25mm	5/10/20/50	5000	± 0.01	2.5	3000	3000	350	300	300
WM120	120x120	KGT ¹⁾ Ø 32mm	5/10/20/40	12000 ⁵⁾	± 0.01	2.0	6000	6000	500	600	600
WV60	60x60	KGT ¹⁾ ø 20mm	5/20/50	4000	± 0.01	2.5	_	-	-	-	-
WV80	80x80	KGT ¹⁾ Ø 25mm	5/10/20/50	5000	± 0.01	2.5	_	_	-	-	-
WV120	120x120	KGT ¹⁾ Ø 32mm	5/10/20/40	12000 ⁵⁾	± 0.01	2.0	-	-	-	-	-
WZ60	60x60	KGT ¹⁾ ø 20mm	5/10/20/50	2800	± 0.02	1.5	s. p. 66	s. p. 66	50	-	-
WZ80	80x80	KGT ¹⁾ Ø 25mm	5/10/20/50	3500	± 0.02	1.5	s. p. 67	s. p. 67	150	-	-
W00	37x37	KGT ¹⁾ Ø 12mm	4/5	200	± 0.05	0.25	250	200	6	15	10
W02	59x59	KGT ¹⁾ ø 20mm	5/20	2500	± 0.05	1.0	650	500	30	70	50
MLSM60	160x90	KGT ¹⁾ Ø 25mm	5/10/20/50	5000	± 0.01	2.5	6000	6000	400	460	460
MLSH60	160x90	ZRT ¹⁾ 32ATL5	135	1480	±0.05	6.5	3000	3000	165	310	310

¹ KGT = Ball screw ZRT = Toothed belt drive
 ²⁾ All maximum forces and moments given refer to the center/top of the power bridge.

³⁾ Increase of admissible values possible by long or additional power bridge.
 ⁴⁾ Refers to the average positioning variation according to VDI/DGQ 3441.
 ⁵⁾ At 40 mm pitch max 8000N.

Summary of additional options and accessories for linear drive units with toothed belt drive

Туре	Felt- wiper FA	Moun- ting- brackets KAO	Long power bridge LKB	Additional- freesliding- power bridge OKB	Guide tube	Universal joint shaft GX	Belt drive RT	Limit sv inductive EN	vitches mechanical ES	Shaft- encoder	Electric drives ADG	Motor- adapter flange MGK
WH40		• (p. 25)	• (p. 26)	• (p. 27)	• (p. 21)	• (p. 28)	• (p. 29)	• (p. 110)	• (p. 30)	• (p. 31)	• (p. 97)	
WH50	• (p. 25)	• (p. 25)	• (p. 26)	• (p. 27)	• (p. 21)	• (p. 28)		• (p. 110)	• (p. 30)	• (p. 31)	• (p. 97)	•
WH80	• (p. 25)	• (p. 25)	• (p. 26)	• (p. 27)	• (p. 22)	• (p. 28)		• (p. 110)	• (p. 30	• (p. 31)	• (p. 97)	•
WH120	• (p. 25)	• (p. 25)	• (p. 26)	• (p. 27)	• (p. 22)	• (p. 28)		• (p. 110)	• (p. 30)	• (p. 31)	• (p. 97)	•
WHZ50		• (p. 25)	• (p. 26)	• (p. 27)		• (p. 28)		• (p. 110)	• (p. 30)	• (p. 31)	• (p. 97)	•
WHZ80		• (p. 25)	• (p. 26)	• (p. 27)		• (p. 28)		• (p. 110)	• (p. 30)	• (p. 31)	• (p. 97)	•
WM60-370 ZRT		• (p. 54)		• (p. 27)	• (p. 22)	• (p. 28)		• (p. 110)		• (p. 31)	• (p. 97)	•
WM80-370 ZRT		• (p. 54)		• (p. 27)	• (p. 22)	• (p. 93)		• (p. 110)		• (p. 31)	• (p. 97)	•
WM80 ZRT		• (p. 54)	• (p. 26)	• (p. 27)	• (p. 22)	• (p. 93)		• (p. 110)		• (p. 31)	• (p. 97)	•
MLSH60 ZRT		• (p. 88)	• (p. 89)	• (p. 90)		• (p. 93)		• (p. 110)		• (p. 31)	• (p. 97)	•

Туре	Mounting brackets KAO/WBL	Long power bridge LKB	Additional free- sliding power bridge OKB	Guide tube	Bevel gear box KRG	Universal joint shaft GX
WM40	• (p. 54)	• (p. 55)	• (p. 56)	• (p. 57)	• (p. 57)	• (p. 59)
WM60	• (p. 54)	• (p. 55)	• (p. 56)	• (p. 57)	• (p. 57)	• (p. 59)
WM60 ZRT	• (p. 54)		• (p. 56)	• (p. 57)	• (p. 57)	• (p. 60)
WM80	• (p. 54)	• (p. 55)	• (p. 56)	• (p. 57)	• (p. 57)	• (p. 59)
WM80 ZRT	• (p. 54)	• (p. 55)	• (p. 56)	• (p. 57)	• (p. 57)	• (p. 60)
WM120	• (p. 54)	• (p. 55)	• (p. 56)	• (p. 57)	• (p. 57)	• (p. 59)
WV60	• (p. 54)				• (p. 57)	• (p. 59)
WV80	• (p. 54)				• (p. 57)	• (p. 59)
WV120	• (p. 54)				• (p. 57)	• (p. 59)
WZ60	• (p. 68)				• (p. 69)	•
WZ80	• (p. 68)				• (p. 69)	•
W00	• (p. 76)			• (p. 57)		
W02	• (p. 76)			• (p. 57)	• (p. 78)	• (p. 79)
MLSM60 KGT	• (p. 88)	• (p. 89)	• (p. 90)		• (p. 92)	• (p. 93)

Summary of additional options and accessoires for linear drive units with screw drive

Туре	Parallel	Belt drive	Limit sv	vitches	Shaft	Electric	Motor adapter
	PRT	RT	EN	ES	ADG	unves	MGK
WV60		• (p. 61)	• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WV80		• (p. 61)	• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WV120			• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WM40	• (p. 60)	• (p. 61)	• (p. 110)		• (p. 63)	• (p. 97)	•
WM60		• (p. 61)	• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WM80		• (p. 61)	• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WM60		• (p. 61)	• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WM80		• (p. 61)	• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WM120			• (p. 110)	• (p. 62)	• (p. 63)	• (p. 97)	•
WZ60		• (p. 71)	•	• (p. 71)		• (p. 97)	•
WZ80		• (p. 71)	•	• (p. 71)		• (p. 97)	•
W00	• (p. 78)	• (p. 80)	• (p. 110)		• (p. 81)	• (p. 97)	•
W02	• (p. 78)	• (p. 80)	• (p. 110)		• (p. 81)	• (p. 97)	•
MLSM60		• (p. 94)	• (p. 110)	• (p. 95)	• (p. 96)	• (p. 97)	•

Automated 2-axis-handling of a cleaning system for semiconductor production in clean room. Astec GmbH in Berg. Germany.

Mechanical linear drive units WIESEL SPEEDLine®

WIESEL SPEEDLine® WH40

• Completely integrated miniaturized drive unit with linear guide and toothed belt drive.

WIESEL SPEEDLine® WH50/80/120

• Completely integrated linear axis with roller guideway and toothed belt drive.

WIESEL*SPEED*Line[®] Z-axis

- Especially developed for vertical movements.
- Reduction in dead weight together with the short design allow high dynamics.

WIESEL *SPEEDLine*[®] New technology right to the centre!

WIESELSPEEDLine® WH40

A linear drive unit for dynamic miniaturized applications. High performance with extremely small dimensions.

Linear guides

Precise positioning is made possible by a polished linear guide with a high degree of guide accuracy. A smaller motor can be added thanks to the low coefficient of friction. Rubber wipers protect the mechanism from dirt, thus increasing service life.

Completely new arrangement of the roller guideway

The H-Type arrangement of guidance allows high forces and moments and thereby the choice of a smaller size. Your benefit: lighter and more cost effective designs.

AT toothed belt

A proven drive element: • high loading

- wear resistant
- high efficiency
- exact spacing
- low mass

ATL toothed belt

- with steel reinforcement especially suitable for linear drive units
- higher performance
- repeatability of ± 0.05 mm even at high feed forces

With the WIESEL SPEEDLine® single-axis solutions can be realized as well as two- and three-dimensional handling systems.

The WIESEL *SPEEDLine*[®] Z-axis is especially suitable for vertical movements. High dynamics and loads due to the reduced mass to be moved and the short design.

WIESEL SPEEDLine

Central lubrication

The linear guide system is conveniently relubricated from a central point. Whether by hand or automatically, maintenance is now a simple matter.

The toothed belt can be retensioned and exchanged comfortably without dismounting the load (only WH50/80/120). Thus reducing your service costs.

FEA optimized design FEA analysis helps model and optimize the profile and the whole linear axis. The result: highest performance and

reliability.

General technical data WIESEL SPEEDLine®

Speeds

The linear speed achieved by a linear drive unit depends on the pitch of the mechanical drive element and on the input rotational speed. The various linear speeds which can be achieved by the individual sizes are listed in the following table:

Operating hours

The toothed belt as well as the roller guideway/linear guide allow continuous operation up to 100%. Extremely high loads, combined with long operating hours may reduce the lifetime.

Size	Lead [mm/rev.]	n _{max} [rpm]	v _{max} [m/s]
WH40	100	1800	3
WH50/WHZ50	120	3250	6.5
WH80/WHZ80	200	3000	10
WH120	260	2308	10

Installed position

The linear drive units can basically be installed in any position. provided that all the forces and moments occurring remain below the maximum values for the axis concerned.

Safety advice

All sizes are generally **not selflocking**. It is therefore advisable to install suitable motors with holding brakes, particularly if the linear drive unit is installed vertically.

In case of a breakage of the toothed belt the load is released instantly. Therefore safety precautions have to be taken for applications which are critical with regard to safety.

Loading

All specified maximum forces and moments refer to the centre/top of the power bridge. Load overlay at several coordinates: If compound loads occur with force and moment components in more than one direction, the maximum permissible loads must be reduced to 60% of the specified maximum values. When forces and moments are overlaid in two or three coordinates, it is necessary to reduce the maximum permissible load to 60% of the maximum value.

Load ratings

See page 120

Temperatures

All series are designed for continuous operation at ambient temperatures up to 80° C. Temperatures up to 100° C are also permitted for brief periods. The linear drive units are not suited for operation at subzero temperatures.

Idle torque

The indicated values for the idle torque are mean values determined in a rank. In individual cases these values can deviate.

Straightness/torsion

The aluminium profiles (material AIMgSi 0.5) are extruded sections which may display deviations in straight-ness and torsion due to their manufacturing process. The tolerance of these deviations is defined in DIN 17615. The deviations found in NEFF linear drive units correspond to these limits at least, but are normally well below. In order to obtain the required guide accuracy, the linear drive unit must be aligned with the aid of levelling plates or clamped from a mounting surface machined with sufficient accuracy. This ensures that tolerances of at least 0.1 mm/1000 mm are achieved.

Guide tube

A guide tube contains all elements of a linear drive unit except the mechanical drive element. It serves mainly as a support and holding capacity for higher loads and moments. For this purpose it is either mounted on the backside of a driven WIE-SEL[®] or installed parallel to it. All WIESEL[®] models are also available as guide tubes with guide.

Stroke lengths

The stroke length specified in the order code represents the maximum possible linear displacement. Acceleration and deceleration paths must be taken into account when designing the system. as well as any required over-run.

Repeatability

The repeatability is definded as the capability of a linear drive to get back to an actual position which was reached under the same conditions within the given tolerances. The repeatability amongst others is influenced by:

- Load
- Speed
- Deceleration
- Direction of travel
- Temperature

Aggressive working environment

Because of their tough design WIESEL *SPEEDLine*[®] units can be used even in rough surroundings without additional covering. As a protection against coarse dirt optional wipers can be offered. In case of extreme dirt or fine dust/ filings a protective bellow is recommended and provided on request.

Maintenance

The linear guide must be lubricated via the grease nipple on the power bridge with the aid of a grease gun after 400 hours of operation or at least every 3 months. Grease: roller bearing grease (original grease: Fuchs Lubritech URETHYN E/M2).

Lubrication WH50/80/120

In order to obtain a useful life-time of the guidance system the two guides should be permanently covered with a thin oil film. The two lubrication points which are arranged at the sides of the power bridge serve for lubrication.

Tensioning of toothed belt

The tension of the toothed belt can be adjusted with the aid of the tensioning screws on the guide casing which are intended for this. The linear units are delivered with optimal tension values in order to guarantee security in function. Changes in this adjustment must only be carried out in service cases and by NEFF service engineers.

Pretensioning of the guidance system

The WIESEL[®] units leave the factory with optimal preloading values which guarantee optimum travelling characteristics as well as the necessary capacity in forces and moments. Changes in the preloading of the rollers must only be carried out after prior consultation with NEFF service engineers.

WIESEL *SPEEDLine*[®] **WH40** with linear guide and AT toothed belt

Note: The use of a long power bridge increases the total length.

Technical data

•	Linear speed:	max. 3.0 m/s
	Developed a la ll tra	0.05

- Repeatability: <u>± 0.05 mm</u>
 Acceleration: <u>max. 40 m/s²</u>
- Drive element: ______ Toothed belt 10AT5
- Pully diameter: _____ 31.83 mm
- Stroke per revolution: ______ 100 mm
- Stroke length: _____ up to 2000 mm
 Length of power bridge: _____ 120 or 210 mm
- Length of power bridge. _____ 120 of 210 fr see page 26

Geometrical moment of inertia:	ly 12.6 · 104 mm ⁴
	lz 15.3 · 10 ⁴ mm ⁴
 Weights 	

	Basic unit with zero stroke:	1.19 Kg
	100 mm stroke:	0.15 kg
	Power bridge with rollers:	0.28 kg
•	Provided:	with 4 pieces KAO mounting
		brackets

Loads and load moments

Load dynam. [N] Fx drive¹⁾ max. 315 Fy 450 ±Fz 600 Load moment dynam. [Nm] Мx 10 My² 30 30 MZ²

Execution of drive shafts (Detailed description see

page 123) Other executions on request.

Idle torques [Nm]

Rotational speed [rpm]	M _{idle} [Nm]
150	0.1
900	0.3
1800	0.6

Fx depending on the linear speed

Order Code see page 123

¹⁰ Depending on the speed, see respective chart.
²¹ Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (page 26 and 27).

WIESEL SPEEDLine® WH50 with roller guideway and ATL toothed belt

Note: In the section of the rail for the initiators the WIESEL® can not be fixed by means of KAO mounting brackets. Mounting kit for the lateral assembly of the initiators at the sides of the axis on request. Mounted wipers on request. The use of a long power bridge increases the total length.

Technical data

	Linear speed:	max. 6.5 m/s
•	Repeatability:	. ± 0.05 mm
-	Acceleration:	max. 40 m/s ²
	Drive element:	Toothed belt 16ATL5
•	Pulley diameter:	38.20 mm
	Stroke per revolution:	. 120 mm
-	Stroke length:	up to 3000 mm
	Length of power bridge:	240 or 400 mm,
•	Geometrical moment of inertia:	see page 26 ly 3.30 · 10 ⁵ mm ⁴ lz 2.65 · 10 ⁵ mm ⁴
	Weights	
	Basic unit with zero stroke:	3.50 kg
	100 mm stroke:	0.44 kg
	Power bridge with rollers:	0.90 kg
•	Provided:	with 4 pieces KAO mounting
		brackets

Loads and load moments

Load	dynam. [N]
Fx drive ¹⁾	max. 670
Fy	415
±Fz	730
Load moment	dynam. [Nm]
Mx	16
My ²⁾	87
Mz ²⁾	50

Execution of drive shafts

page 123)

(Detailed description see

Idle torques [Nm]

Rotational speed M_{idle} [Nm] [rpm] 150 1.7 1500 2.4

Other executions on request. AZ2

¹⁾ Depending on the speed, see respective chart.
 ²⁾ Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (page 26 and 27).

3250 3.8

Fx depending on the linear speed

WIESEL *SPEED*Line[®] **WH80** with roller guideway and ATL toothed belt

WIESEL SPEEDLine

Note: Mounted wipers on request. The use of a long power bridge increases the total length.

Technical data

- Linear speed: _____ max. 10 m/s
- Repeatability: <u>+ 0.05 mm</u>
- Acceleration: _____ max. 40 m/s²
 Drive element: _____ Toothed belt 32ATL10
- Stroke per revolution: _____ 200 mm
- Stroke length: _____ up to 11000 mm
- Length of power bridge: _____ 280 or 450 mm, see page 26
- Geometrical moment of inertia: IV 1.93 · 10⁶ mm⁴ Iz 1.80 · 10⁶ mm⁴

 Weights 	
Basic unit with zero stroke:	8.63 kg
100 mm stroke:	0.93 kg
Power bridge with carriage:	2.75 kg
Provided:	with 4 pieces KAO mounting
	brackets

Execution of drive shafts

(Detailed description see page 123) Other executions on request.

Idle torque [Nm]

Rotational speed [rpm]	M _{idle} [Nm]
150	2.4
1500	3.5
3000	5.0

Note: For tube lengths of 6300 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes

Loads and load moments

Load	dynam. [N]
Fx drive ¹⁾	max. 2700
Fy	882
±Fz	2100
Load moment	dynam. [Nm]
Load moment Mx	dynam. [Nm] 75
Load moment Mx My ²⁾	dynam. [Nm] 75 230
Load moment Mx My ²⁾ Mz ²⁾	dynam. INm] 75 230 100

Fx depending on the linear speed

Order Code see page 123

Depending on the speed, see respective chart.
 Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (page 26 and 27).

WIESEL SPEEDLine® WH120 with roller guideway and ATL toothed belt

Note: Mounted wipers on request. The use of a long power bridge increases the total length.

Technical data

	Linear	speed:		max.	10	m/s	
--	--------	--------	--	------	----	-----	--

Repeatability:	± 0.05 mm
	· · · · ·

- Acceleration: max. 40 m/s² Toothed belt 50ATL10 Drive element:
- Pully diameter: 82.76 mm
- Stroke per revolution: 260 mm
- Stroke length:
- up to 11000 mm Length of power bridge: 280 or 520 mm,
- see page 26 ly 6.69 · 10⁶ mm⁴ • Geometrical moment of inertia:

		IZ 6.88 · 10º MM4
•	Weights	
	Basic unit with zero stroke:	17.00 kg
	100 mm stroke:	1.64 kg
	Power bridge with carriage:	5.50 kg
•	Provided:	with 4 pieces KAO mounting

brackets

Loads and load moments

Load	dynam. [N]
Fx drive ¹⁾	max. 5000
Fy	4980
±Fz	9300
Load moment	dynam. [Nm]
Load moment Mx	dynam. [Nm] 500
Load moment Mx My ²⁾	dynam. [Nm] 500 930
Load moment Mx My ²⁾ Mz ²⁾	dynam. [Nm] 500 930 500

Execution of drive shafts

(Detailed description see page 123) Other executions on request.

Idle torques [Nm]

Rotational speed [rpm]	M _{idle} [Nm]
150	4.8
1500	7.0
2308	10.0

Note: For tube lengths of 4900 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes.

Fx depending on the linear speed

Order Code see page 123

20

WIESEL SPEEDLine® Guide tube

WH40-190

WH50-190

WIESEL SPEEDLine® Guide tube

WH80-190

WH120-190

WIESEL SPEEDLine® WHZ50 with roller guideway and ATL toothed belt

WIESEL SPEEDLine

Note: In the section of the rail for the initiators the WIESEL® can not be fixed by means of KAO mounting brackets. Mounting kit for the lateral assembly of the initiators at the sides of the axis on request. Mounted wipers on request. The use of a long power bridge increases the total length.

Technical data

	Linear speed:	. max. 6.5 m/s
-	Popostability	- 0.05 mm

- ≥atabilitv 0.05 mm max. 40 m/s² Acceleration:
- Drive element: Toothed belt 16ATL5
- Pully diameter: 38.20 mm
- Stroke per revolution: 120 mm
- up to 1500 mm • Stroke length: Length of power bridge: 240 or 400 mm,
- see page 26 ly 3.30 · 10⁵ mm⁴ lz 2.65 · 10⁵ mm⁴ • Geometrical moment of inertia:

•	Weights	
	Basic unit with zero stroke:	_ 4.50 kg
	100 mm stroke:	_ 0.42 kg
	Power bridge with carriage:	_ 2.90 kg

Execution of drive shafts

(Detailed description see page 123) Other executions on request.

Idle torques [Nm]

Rotational speed [rpm]	M _{idle} [Nm]
150	1.7
1500	2.4
3250	3.8

Loads and load moments

Load	dynam. [N]
Fx drive ¹⁾	max. 670
Fy	415
±Fz	730
Load moment	dynam. [Nm]
Mx	16
My ²⁾	87
MZ ²⁾	50

Fx depending on the linear speed

Bestell-Code Seite 123

Depending on the speed, see respective chart.
 Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (page 26 and 27).

WIESEL *SPEEDLine*[®] **WHZ80** with roller guideway and ATL toothed belt

Note: Mounted wipers on request. The use of a long power bridge increases the total length.

Technical data

- Linear speed: _____ max. 10 m/s
- Repeatability: <u>+ 0.05 mm</u>
 Acceleration: <u>max. 40 m/s²</u>
- Acceleration: ______ max. 40 m/s²
 Drive element: ______ Toothed belt 32ATL5
- Stroke per revolution: _____ 200 mm
- Stroke length: _____ up to 3000 mm
- Length of power bridge: _____ 280 or 450 mm,
 280 or 450 mm,
- Geometrical moment of inertia: ly 1.93 · 10⁶ mm⁴ lz 1.80 · 10⁶ mm⁴
- Weights
 Basic unit with zero stroke: _____ 11.20 kg
 100 mm stroke: _____ 0.91 kg
 Power bridge with carriage: _____ 6.65 kg

Execution of drive shafts

(Detailed description see page 123) Other executions on request.

Fx depending on the linear speed

Idle torques [Nm]

Rotational speed [rpm]	M _{idle} [Nm]
150	2.4
1500	3.5
3000	5.0

10,0

9,0

Loads and load moments

Load	dynam. [N]
Fx drive ¹⁾	max. 1480
Fy	882
±Fz	2100
Load moment	dynam. [Nm]
Mx	75
My ²⁾	230
Mz ²⁾	100

Order Code see page 123

¹⁾ Depending on the speed, see respective chart.
 ²⁾ Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (page 26 and 27).

2,0

3,0

4,0

6,0

5,0 v [m/s] 7,0 8,0

1,0

> 400 200

> > 0,0

Accessories for WIESEL SPEED Line® Felt wipers/Mounting brackets

WIESEL SPEEDLine

Felt wipers FA for WH50/80/120

The felt wipers are positioned directly in front of each of the rollers at the front next to the power bridge, so that they wipe coarse dirt off the guide shaft. In this way, dirt is prevented from getting cought between the roller and the guide rail. This means that the WIESEL *SPEEDLine*[®] units can also be used in environments in which the guide tubes are exposed to exessive dirt. Installing the felt wipers may increase the driving torque slightly. There is no loss of

Mounting brackets KAO

The mounting brackets KAO serve for mounting the WIESEL[®] unit to a mounting surface. They are inserted in the grooves provided in the sides of the tubular aluminium profile and screwed onto the mounting surface with the aid of cylinder head screws.

The number of mounting brackets required depends on the load and overall length of the WIESEL[®] unit. Increasing side forces reduce the admissible distance between the brackets.

4 pieces of mounting brackets are delivered with each unit.

System brackets KAO

Only needed for WH40. With multi-coordinate arrangements of several WIESEL® units, this can be used to screw a WIESEL® directly to the power bridge of a unit positioned immediately below it. stroke length and no additional external interference contour. As a result, the felt wipers can also be fitted to existing systems as an optional extra.

Size	Dimension x
WH50	6
WH80	7
WH120	8

Size	Torque [Nm]*
WH40	5.4
WH50	5.4
WH80	9
WH120	19–22

for cylinder head screw DIN ISO 4762-8.8 unoiled on aluminium

Note:

It is advisable to secure the linear drive unit at intervals of at least 750 mm. This ensures that all the permissible loads can be borne without significantly deforming the tubular aluminium profile.

- - - (9)	

	Dimensions [mm]								
Size	A	В	С	D	ØE	F	ØG	Н	
WH40	54	16	10	40	10	5.7	5.5	7	
WH50	54	16	10	40	10	5.7	5.5	7	
WH80	68	17.5	17	50	11	6.5	6.6	7	
WH120	80	25	18	50	15	8.5	9	10	
WH40 System KAO	40	16	10	26	10	5.7	5.5	7	

Accessories for WIESEL SPEED Line® Long power bridge

RIEFF Antriebstechnik · Automation

WH40	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
WH50	
WH80	$8 \times M6$ 12 lief 12 lief 106 ± 0.2 234 ± 0.2 328 ± 0.2 450
WH120	16x M8 12 tief 12 tief 12 tief 148±0.2 160±0.2 480±0.3 520

Size	ΔKb	Length of power bridge [mm]	My [Nm]	Mz [Nm]
WH40	90	210	50	50
WH50	160	400	130	75
WH80	170	450	345	150
WH120	240	520	1395	750
WHZ50	160	400	130	75
WHZ80	170	450	345	150

Note: All other limit values are comparable to those versions with standard power bridge.

Note: High load moments lead to major deformation of the tubular aluminium profile. The distance between supports should be reduced in order to minimize this deformation. The force must be applied only in the area of the tapped holes.

Accessories for WIESEL SPEEDLine® Additional free-sliding power bridge

Additional free-sliding power bridge OKB

The additional free-sliding power bridge provides:

- individual increase of the load moments My and Mz of a WIESEL[®] unit.
 Load moment My is limited by force ± Fz, Mz is limited by force ±Fy.
- Longer and therefore improved guidance.
- Particularly suitable as a vertical guide and lifting module.

The required centre distance between the driven and the free-sliding power bridge is calculated as follows:

Μ $L_{\Delta} =$ F_{max}

- L_A = Centre distance between driven and free-sliding power bridge [mm]
- M = Load moment My or Mz [Nm]
- F_{max} = Maximum force Fz or Fy of the WIESEL[®] unit concerned [N]

The centre distance between the two power bridges must be taken into account when calculating the overall length of the WIESEL® unit.

Overall length of WIESEL[®] unit $L_{tot} = Stroke + C + L_A$

C = Specific additional length [mm] (see technical data of the respective WIESEL®) Example: WH80 L= Stroke + 550 (\(\expression Lc) \) ±1

Minimum centre distance L_A between driven and free-sliding power bridge (given for standard power bridge).

Size	L _A [mm]
WH40	130
WH50/WHZ50	250
WH80/WHZ80	290
WH120	290
	Size WH40 WH50/WHZ50 WH80/WHZ80 WH120

The force required for moving the additional free-sliding power bridge must be taken into account when selecting the drive.

Size	F [N]
WH40	2
WH50/WHZ50	16
WH80/WHZ80	20
WH120	30

Note:

High load moments lead to major deformation of the tubular aluminium profile. The distance between supports should be reduced in order to minimize this deformation.

Accessories for WIESEL SPEED Line® Universal joint shaft

Universal joint shaft GX

By means of the universal joint shaft GX two WIESEL® units with tooth belt drive are connected in parallel. The universal joint shaft transmits the torque from one WIESEL® unit to the other. Long connecting shafts should be supported over their length. The required pillow blocks are available on request.

Technical data

Size	M11)	M2 ²)	m1 ³)	m24)	J1 ⁵⁾	J2 ⁶⁾	M _A ⁷⁾
GX1	10	21	0.47	1.05	2.68	2.15	1.2
GX4	60	75	2.31	1.61	21.4	7.63	9.7
GX8	120	200	3.55	2.16	78	18.58	16.5

¹⁾ Transmittable torque [Nm]

 $^{\rm 2)}\,{\rm Max.}$ input torque at the input shaft of the linear drive unit [Nm]

³⁾ Weight without middle part [kg]

⁴⁾ Weight of middle part [kg/m]

⁵⁾ Mass inertia of the two connectors [kgcm²]

⁶⁾ Mass inertia of the shaft [kgcm²/m]

⁷⁾ Starting torque of the tensoring screws of the DKWN tensioning element [Nm]

Execution with tensioner (standard feature)

Siz	ze	Dimensions [mm]								
		$A \mid B \mid d_1 \mid d_2 \mid d_3 \mid d_4 \mid L_2 \mid N_2 \mid$							R	
(GX1	24	7	8	18	56	56	24	36	30
0	GX2	24	7	12	22	56	56	24	36	30
C	GX4	28	8	20	38	100	100	30	65	45
(SX8	32	10	25	47	120	125	42	80	60

Execution with key way (on request)

Size	Dimensions [mm]								
	A	В	d _{2min.}	d _{2max.}	d ₃	d ₄	L ₂	N ₂	R
GX1	24	7	10	25	56	56	24	36	30
GX4	28	8	16	45	100	100	30	65	45
GX8	32	10	20	55	120	125	42	80	60

Accessories for WIESEL SPEEDLine® Timing belt drive

RT timing belt drive

The RT40 belt drive is a transmission designed to minimize the overall length. The RT housing is both belt guard and motor support. Transmission ratios of i = 1 : 1.

Technical data

Size	M _{max} [Nm]	n _{max} input Irpm	M _{idle} [Nm]	Efficiency η	Mass inertia J [kgcm ²] 1 : 1	Weight [kg] 1 : 1
RT40	3.7	1800	0.3	0.8	0.25	0.62

 $\rm M_{max}~$ = Maximum torque at the output shaft [Nm]

n_{max} = Maximum input speed [rpm]

M_{idle} = Idle torque [Nm]

J = Mass inertia refered to input shaft [kgcm²]

Accessories for WIESEL SPEEDLine®

Mechanical limit switches

Mechanical limit switches ES

Mechanical limit switches must be used wherever people may be jeopardized if the electric drive does not cut out. They are fittet in the groove which also accommodates the KAO mounting brackets in the aluminium profile.

Technical data

Cam-actuated mechanical limit switch XCM-B516 with roller lever Dual-circuit NC + NO NC contact forcibly opened in accordance with DIN EN 60 204 Type of protection: IP67 Max. perm. starting speed: 1.5 m/s Cable length: 1 m. Id.-No.: 6715450281 5 m. Id.-No.: 6715450290

10 m. ld.-No.: 6715450299

Size	Dimensions [mm]						
	A	В	C	D	E	F	
WH50	34	61	10	26	49	83	
WH80	31	76	10	39	49	103	
WH120	34	88	10	51	49	103	
WHZ50	47	125	23	90	49	83	
WHZ80	46	175	25	138	49	103	

Note:

The linear unit can not be fixed by means of the mounting brackets KAO in the range of the fixing plates for the mechanical limit switches. Security limit switches serve to cut off energy from the drive for sure. Whenever they are running at high speeds, they can not avoid driving over the admissible drive section. It is necessary to ensure by means of other drive and control measures that the limit areas are only approached at low speeds.

Accessories for WIESEL SPEEDLine®

Shaft encoder attachment

WIESEL SPEEDLine

Shaft encoder attachment ADG

Incremental shaft encoders can be used in combination with mechanical drive elements to measure displacements. This is achieved by mounting the shaft encoder on the movable bearing end of the WIESEL® shaft. The mounting of the shaft encoder is possible only at the drive bearing housing, not at the tensioning bearing housing.

As a standard NEFF uses the incemental shaft encoder IG601 with impulse counts between 100 and 2500. Two output circuits are basically possible:

GE = Push-pull output, 10–30 V LD = Line Driver, antivalent

as per RS422 (5V± 10%) Detailed information see chapter "shaft encoder" (page 109).

The shaft encoder is connected to the WIESEL® via a two-piece adapter flange and a coupling. It can be adjusted to the required reference point by loosening the threaded studs.

Absolute-value encoders on request.

Ш

ø58

□50

09

55

96 120

WH/WHZ50

IG-601

IG601 mounted on WH50

Enameling line; Sturm in Hankhofen, Germany

Mechanical linear drive units WIESEL POWERLine[®], WIESEL DYNALine[®]

WIESEL POWERLine® WM60/80 ZRT

- Fully integrated drive unit with toothed belt drive and linear ball-recirculating guide.
- Transmission of the feed force and handling of loads and load moments.

WIESEL POWERLine® WM40

 Fully integrated miniaturized linear drive unit with linear guide, ball screw drive and sealing strip

WIESEL POWERLine® WM60/80/120

- Fully integrated linear drive unit with ball screw and linear ball-recirculating guide
- Transmission of the feed force and handling of loads and load moments
- Size WM60/80-370 with short guide system.

WIESEL DYNALine® WV60/80/120

- Fully integrated feed axis with ball screw
- Transmission of the feed force
- Used in combination with external linear guides

WIESEL POWERLine" WIESEL DYNALine"

Applications for linear drive units Examples from actual practice

General technical data WIESEL POWERLine", DYNALine", FORCELine", WO

Linear speeds

The linear speed achieved by a linear drive unit depends on the pitch of the mechanical drive element and on the input rotational speed. The various linear speeds which can be achieved by the individual sizes are listed in the following table:

Drive element	Lead [mm]	n _{max} [rpm]	v _{max} [m/s]
TGT ¹⁾	4	1500	0.1
	8	1500	0.2
	12	1500	0.3
	16	1500	0.4
KGT ²⁾	5	3000	0.25
	10	3000	0.5
	20	3000	1
	40	3000	2
	50	3000	2.5
ZRT ³⁾ 20ATL5	120	1250	2.5
ZRT ³⁾ 25AT10	170	885	2.5
ZRT ³⁾ 32ATL5	135	2889	6.5

1) TGT: Trapezoidal srew drive ²⁾ KGT: Ball screw drive
 ³⁾ ZRT: Toothed belt drive

Installed position

The linear drive units can be installed in almost any position, provided that all the forces and moments occurring remain below the maximum values for the axis concerned.

Security advice

The ball screw drives in all three sizes are generally not selflocking. It is therefore advisable to install suitable motors with holding brake, particularly if the linear drive unit is installed vertically. In case of a break of the toothed belt, the load is released by timing belt driven linear units. Therefore safety precautions have to be taken for applications which are critical with regard to security.

Maximum forces

All maximum forces and moments given refer to the centre/top of the power bridge.Load overlay at several coordinates: If compound loads occur, with force and moment components in more than one direction, the maximum permissible loads must be reduced to 60% of the specified maximum values. When forces and moments are overlaid in two or three coordinates, it is necessary to reduce the maximum permissible load to 60% of the maximum value.

Load ratings

See page 120

Duty cycle

In practice, the following values have been proven.

Drive element:

For a trapezoidal screw the upper limit should be < 30 % per hour, linear ball guides allow duty cycles up to 100 %. Extremely high loads in combination with high duty cycles can reduce the life time.

Guidance element:

For a sliding guide the upper limit should be \leq 30 % per hour, linear ball guides allow duty cycles up to 100 %

Temperature

All series are designed for continuous operation at ambient temperatures up to 80° C. Temperatures up to 100°C are also permitted for brief periods. The linear drive units are not suitable for operation at subzero temperatures

Idle torques

The given values are means from a series of measurements. The effective values may differ in individual cases.

Straightness/torsion

The aluminium profiles (material AlMqSi 0.5) are extruded sections which may display deviations in straightness and torsion due to their manufacturing process. The tolerance of these deviations is defined in DIN 17 615. The deviations found in NEFF linear drive units corresponding to these limits are worst case, but are normally well below. In order to obtain the required guide accuracy, the linear drive unit must be aligned with the aid of leveling plates or

clamped from a mounting surface machined with sufficient accuracy. This ensures that tolerances of at least 0.1 mm/1000 mm are achieved.

Cover strip

for WIESEL POWERLine® WIESEL DYNALine® WIESEL FORCELine® Material: Polyamide 12 Characteristics

- Resistant to alkaline solutions
- Conditionally resistant to acids Rigid
- Abrasionproof
- Little absorbtion of humidity Light-resisting

Guide tube

All the components of a linear drive unit except the mechanical drive element are accommodated in a guide tube which is mounted either to the bottom of a driven WIESEL® or is installed parallel to a driven WIESEL®. It takes higher loads and load moments. All WIESEL® models basically are also available as guide tube (exept WIESEL DYNALine® and VARIOLine®).

Stroke length

The stroke length specified in the order code represents the maximum possible linear displacement. Acceleration and deceleration paths must be taken into account when designing the system, together with any overrun required. Entering the safety zone leads to mechanical collisions and must be prevented with suitable safety measures (safety limit switch, software queries, etc.)

Repeatability

The reapeatability is defined as the capability of a linear drive unit to reach an actual position that has once been reached again under the same conditions. It refers to the average position variation according to VDI/DGQ 3441. The repeatability is influenced, amongst others by:

- Load
- Speed
- Deceleration
- Direction of travel
- Temperature

Aggressive working environment

The mechanical drive and the guidance of the WIESEL® are well protected against dirt by means of the patented cover strip. In cases of heavy dirt and dust particles, an additional bellow is recommended. Upon request.

Maintenance

The mechanical components (ball screw drive and linear ball recirculating guide) must be lubricated via the grease nipple on the power bridge with the aid of a grease gun after 400 hours of operation or at least every three months. On the WM40, one lubrication nipple is used to lubricate the linear guideway, while the second lubrication point supplies the ball screw drive with grease. The cover strip should also be lubricated at the same time in order to prevent premature wear. Grease: roller bearing grease (original grease Fuchs Lubritec URETHYN E/M1).

DYNAL

WIESEL

ine°

POWER

Tensioning of the toothed belt

The tensioning of the toothed belt can be adjusted with the aid of the tensioning screws on the guide casing which are intended for this. The linear units are delivered with optimal tension values in order to guarantee security in function. Changes in this adjustment must only be carried out in service cases and by NEFF service engineers.

NEW: WIESEL*POWERLine*[®] **with toothed belt drive** The best ideas make it simple for you.

The new WIESEL POWERLine^{*} **ZRT** combines the high dynamics of the toothed belt drive with the powerful fully integrated ball recirculating guide of the *POWERLine*[®] system. The pa-tented cover strip protects the guide system safely against dirt. The version 370 offers an attractive price reduction with its shorter guide system and the reduced length of the power bridge. So the *POWERLine*[®] ZRT brings higher dynamics to the tasks of engineering and handling.

Toothed belt The integrated toothed belt allows high dynamics and precision.

Patented cover strip The patented, self-adjusting cover strip is a reliable protection from dirt.

Integrated guide system The integrated ball-recirculating guide system absorbs heavy forces and moments.

WIESEL POWERLine® WM60-370 ZRT with toothed belt drive and integrated short ball-recirculating guide system

Technical data

Linear speed: Repeatability: Acceleration: Drive element: Pully diameter: Stroke per revolution: Stroke length: Length of power bridge: Geometrical moment of inertia:	max. 2.5 m/s ± 0.05 mm max. 20 m/s ² Toothed belt 20ATL5 38.20 mm 120 mm 4000 mm 200 mm Iy 5.62 · 10 ⁵ mm ⁴
	lz 5.94 · 10 ⁵ mm ⁴
Weights	
Basic unit with zero stroke: 100 mm stroke: Power bridge with carriage:	4.30 kg 0.45 kg 1.25 kg

Power bridge with carriage:	1.25 kg
Provided:	with 4 pieces KAO mounting
	brackets

Execution of drive shafts

(Detailed description see page 123). Other executions on request.

Idle torques [Nm]

M _{idle} [Nm]
1.6
2.5
3.0

Loads and load moments

	Load	dynam. [N]				
2	Fx drive ¹⁾	850				
	Fy	1400				
	+/- Fz	1400				
	Load moment	dynam. [Nm]				
	Mx	25				
	My ²¹	50				
	MZ ²¹	50				

FX depending on the linear speed

Order code see page 124

¹⁰ Depending on the speed, see respective chart
 ²¹ Increase of the admissable values by the use of an additional free-sliding power bridge (see page 55, 56).

WIESEL POWER Line® WM80-370 ZRT

Antriebstechnik · Automation

with toothed belt drive and integrated short ball-recirculating guide system

Technical data

 Linear speed: Repeatability: Acceleration: Drive element: Pully diameter: Stroke per revolution: Stroke length: Length of power bridge: Geometrical moment of inertia: 	max. 2.5 m/s \pm 0.05 mm max. 20 m/s ² Toothed belt 25AT10 54.11 mm 170 mm 5500 mm 200 mm see page 55 ly 1.89 \cdot 10 ⁶ mm ⁴ lz 1.97 \cdot 10 ⁶ mm ⁴
 Weights Basic unit with zero stroke:	9.20 kg 0.80 kg 2.10 kg with 4 pieces KAO mounting brackets

Execution of drive shafts

(Detailed description see page 123). Other executions on request.

Idle torques [Nm]

Rotation speed [rpm]	M _{idle} [Nm]
150	4.0
450	5.4
885	6.2

Loads and load moments

Load	dynam. [N]				
Fx drive ¹⁾	1470				
Fy	2100				
+/- Fz	2100				
Load moment	dynam. [Nm]				
Load moment Mx	dynam. [Nm] 68				
Load moment Mx My ²⁾	dynam. [Nm] 68 135				
Load moment Mx My ²⁾ MZ ²⁾	dynam. [Nm] 68 135 135				

FX depending on the linear speed

WIESEL *POWER* Line[®] WM80 ZRT with toothed belt drive and integrated

ball-recirculating guide

Technical data

 Linear speed: Repeatability: Acceleration: Drive element: Pully diameter: Stroke per revolution: Stroke length: Length of power bridge: Geometrical moment of inertia: Weights 	- max. 2,5 m/s - ± 0.05 mm - max. 20 m/s ² - Toothed belt 25AT10 - 54.11 mm - 170 mm - 5400 mm - 280 or 450 mm see page 55 Iy 1.89 · 10 ⁶ mm ⁴ Iz 1.97 · 10 ⁶ mm ⁴
Basic unit with zero stroke: 100 mm stroke: Power bridge with carriage: • Provided:	_ 11.20 kg _ 0.80 kg _ 3.40 kg _ with 4 pieces KAO mounting brackets

Execution of drive shafts

(Detailed description see page 123). Other executions on request.

Idle torques [Nm]

Rotation speed [rpm]	M _{idle} [Nm]
150	6.5
450	7.7
885	9.3

Loads and load moments

Load	dynam. [N]			
Fx drive ¹⁾	1470			
Fy	3000			
+/- Fz	3000			
Load moment	dynam. [Nm]			
Mx	150			
My ²⁾	300			
MZ ²⁾	300			

FX depending the linear speed

Order code see page 124

⁹ Depending on the speed, see respective chart
 ² Increase of the admissable values by the use of a long power bridge or additional free-sliding power bridge (see page 55, 56).

WIESEL POWER Line[®], WIESEL DYNA Line[®] with ball screw drive

Innovative solutions, down to the very last detail

WIESEL POWER Line® WM40

The linear drive unit for miniaturized applications. High performance with extremly small dimensions. The NEFF ball screw drive in combination with the high precision linear guide allows precise positioning.

Patented sealing strip

The patented sealing strip protects the mechanism effectively from dirt. The friction for the deviation of the sealing strip is reduced to a minimum.

Screw support

The patented screw support system permits high speeds (max. input speed) at long strokes.

Well proven and patented guide system*

The high-performance linear ball-recirculating guide with hardened steel running tracks has been integrated into the aluminium profile. Optimum introduction of forces permits maximum force and torque, as well as optimizing the tensile stresses.

Ball cage*

The ball's of the linear guides are protected by a ball cage. They can be replaced quickly and safely.

WIESEL POWER Line° WM60, WM80, WM120

The **WIESEL** *POWER Line*^{*} is an extremely powerful linear drive unit with ball screw drive and integrated ball-recirculating guide. It allows high feed forces and load moments in all directions.

WIESEL POWERLine® detail

Linear guides

Precise positioning is made possible by a polished linear guide with a high degree of guide accuracy. A small motor can be added thanks to the low coefficient of friction. Rubber wipers protect the mechanism from dirt, thus increasing service life.

Central lubrication – a standard feature.

The drive and guide systems are conveniently relubricated from a central point on the power bridge. Whether by hand or automatically, maintenance is now a simple matter.

Optimized ball screw drive

The pre-tensioning of the nut unit can be adjusted by the NEFF service. This increases the lifetime of the axis.

Self-adjusting third-generation cover strip

The patented cover strip reliably protects the mechanical parts against excessive dirt and is retensioned automatically. Result: the maintenance effort is reduced to virtually zero.

FEA-optimized design Both the profile and the entire linear drive unit have been modeled and optimized by finite element analysis (FEA). Result: maximum performance density and reliability.

WIESEL DYNALine® detail

WIESEL DYNALine[®] WV60, WV80, WV120

WIESEL DYNALine[®] permits high feed forces, even in combination with long stroke lengths and high speeds. The supported, covered ball screw must be used in combination with external linear guides.

*only applies to **POWER**Line®

WIESEL POWERLine® WM40 with ball screw drive and integrated linear guide

Technical data

Linear speed: _ _ max. 0.25 m/s

Repeata	ibility:	. ±	0.0	1 m	m*	
				~ ~		

 Acceleration: 	max. 20 m/s ²
 Rotational speed: 	max. 3000 rpm
Drive element:	ball screw**
Diameter:	12 mm
Lead:	5 mm

	• • • • • • • • • • • • • • • • • • • •
Stroke length:	up to 2.000 mm
Power bridge:	. 160 or 210 mm long
	see page 55
Geometrical moment of inertia:	ly 10.8 · 10 ⁴ mm ⁴
	lz 13.4 · 10 ⁴ mm ⁴

	Weights	
	Basic unit with zero stroke:	1.5 kg
	100 mm stroke:	0.3 kg
	Power bridge with carriage:	0.36 kg
•	Provided:	with 4 pieces KAO mounting
		brackets

*with double nut preloaded

**single nut with low backlash or double nut preloaded

Loads and load moments

Load	dynam. [N]	
Fx drive	1000	
Fy	450	
± Fz	600	
Load moment	dynam. [Nm]	
Load moment Mx	dynam. [Nm] 10	
Load moment Mx My ¹⁾	dynam. [Nm] 10 30	
Load moment Mx My ¹⁾ Mz ¹⁾	dynam. [Nm] 10 30 30	

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]
	5
150	0.3
1500	0.5
3000	0.8

Additional lenghts as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–500	65	35	270
501-1100	65	45	280
1101–2000	70	60	300

Rotational speed of the screw as a function of the total length

Order code see page 124

¹⁰ Increase of the admissable values by the use of a long power bridge or additional free-sliding power bridge (see page 55, 56).

WIESEL *POWER Line*[®] **WM60 - 370** with ball screw drive and integrated short ball-recirculating guide system

Technical data

•	Linear speed:	_ max. 2.5 m/s
•	Repeatability:	_ ± 0.02 mm
•	Acceleration:	_ max. 10 m/s ²
•	Rotational speed:	_ max. 3000 rpm
•	Drive element:	_ Ball screw with
		single nut, low backlash
	Diameter:	_ 20 mm
	Lead:	_ 5, 20, 50 mm
	Stroke length:	up to 5000 mm
	Power bridge:	200 mm long
		see page 55
	Geometrical moment of inertia:	ly 5.8 · 10 ⁵ mm ⁴
		lz 5.9 · 10 ⁵ mm ⁴
	Weights	
	Basic unit with zero stroke:	3.80 ka
	100 mm stroke:	0.65 kg
	Power bridge with carriage:	1.00 kg
	Provided:	with 4 pieces KAO mounting
		brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]			
	5	20	50	
150	0.5	0.9	1.2	
1500	0.9	1.4	1.8	
3000	1.3	1.6	2	

Loads and load moments

_	·Mx .*
+Mz -	-Wy
+F2	

Load	dynam. [N]	Stro
Fx drive	2800	0-5
Fy	1400	58
± Fz	1400	114
		18
Load moment	dynam. [Nm]	24
Mx	50	312
My ¹⁾	100	378
Mz1)	100	44
	missable velues by th	

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–580	95	20	335
581-1140	110	60	390
1141–1805	130	80	430
1806-2460	155	105	480
2461-3125	175	125	520
3126-3780	200	150	570
3781–4445	220	170	610
4446-5000	240	190	650

Order code see page 124

Increase of the admissable values by the use of an additional free-sliding power bridge (see page 55).

WIESEL *POWER Line*[®] **WM60** with ball screw drive and integrated ball-recirculating guide system

Technical data

Linear speed: Repeatability: Acceleration: Rotational speed: Drive element: Diameter: Lead: Stroke length:	- max. 2.5 m/s - ± 0.01 mm - max. 20 m/s ² - max. 3000 rpm - Pretensioned ball screw - 20 mm - 5, 20, 50 mm - up to 11.000 mm with pitch 50 mm max. 5000 mm
Power bridge:	_ 260 or 450 mm long
• Geometrical moment of inertia:	see page 55 ly 5.8 · 10 ⁵ mm ⁴ lz 5.9 · 10 ⁵ mm ⁴
 Weights Basic unit with zero stroke:	- 6.16 kg - 0.65 kg - 1.99 kg - with 4 pieces KAO mounting brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]			
	5	20	50	
150	0.6	1.1	1.5	
1500	1.1	1.8	2.3	
3000	1.6	2.0	2.5	

Note: For tube lengths of 6300 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's specification. For screw leads > 20 mm, excess lengths cannot be implemented.

Loads and load moments

Load	dynam. [N]		
Fx drive	4000		
Fy	2000		
± Fz	2000		
Load moment	dynam. [Nm]		
Mx	100		
My ¹⁾	200		
MZ ¹⁾	200		

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–695	115	65	460
696–1335	165	115	560
1336–2075	185	135	600
2076–2780	210	160	650
2781–3545	230	180	690
3546-4285	250	200	730
4286–5015	275	225	780

ⁿ Increase of the admissable values by the use of a long power bridge or additional free-sliding power bridge (see page 55, 56).

WIESEL POWERLine® WM60 - 500 with ball screw drive and integrated ball recirculating guide system in right-/left execution

Technical data

Linear speed:	_ max. 0.25 m/s
Repeatability:	_ ± 0.01 mm
Acceleration:	_ max. 20 m/s ²
Rotational speed:	_ max. 3000 rpm
Drive element:	Pretensioned ball screw
Diameter:	20 mm
Lead:	5 mm
 Stroke length: 	up to 10340 mm ¹⁾
	¹⁾ refered to both power bridges
Power bridge:	260 or 450 mm long
• Geometrical moment of inertia:	ly 5.8 · 10 ⁵ mm ⁴ lz 5.9 · 10 ⁵ mm ⁴
 Weights 	
Basic unit with zero stroke:	_ 10.33 kg
100 mm stroke:	_ 0.65 kg
Power bridge with carriage:	_ 1.99 kg
Provided:	with 4 pieces KAO mounting brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]
	5
150	1.2
1500	2.2
3000	3.2

Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's specifications. For screw leads > 20 mm, excess lengths cannot be implemented.

Loads and load moments

	Load	dynam. [N]
ĸ	Fx drive	4000
	Fy	2000
	± Fz	2000
	Load moment	dynam. [Nm]
	Mx	100
	My ¹⁾	200
	Mz ¹⁾	200

Additional lengths as a function of the stroke

Stroke length [mm]	A	B	С	Х	Y	Z
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
0–1390	115	65	60	80	620	800
1391-2670	165	115	210	230	770	1050
2671-4150	185	135	250	270	810	1130
4151-5560	210	160	300	320	860	1230

WIESEL POWER Line[®] WM80 - 370

with ball screw drive and integrated short ball-recirculating guide system

Technical data

Linear speed: Repeatability: Acceleration: Rotational speed: Drive element:	max. 2.5 m/s ± 0.02 mm max. 10 m/s ² max. 3000 rpm Ball screw with
Diameter: Lead: • Stroke length:	single nut, low backlash 25 mm 5, 10, 20, 50 mm up to 5000 mm
Power bridge:	200 mm long see page 55
• Geometrical moment of inertia:	ly 1.9 · 10 ⁶ mm ⁴ lz 1.9 · 10 ⁶ mm ⁴
 Weights Basic unit with zero stroke:	. 7.00 kg . 1.10 kg . 1.60 kg . with 4 pieces KAO mounting brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]			
	5	10	20	50
150	0.6	1.1	1.3	1.8
1500	1.1	1.5	1.6	2.2
3000	1.4	1.8	1.8	2.7

Loads and load moments

1		Additional leng	uns as a	Tuncuo	III OT
Load	dynam. [N]	Stroke length [mm]	A [mm]	B [mm]	Addit
Fx drive	3500	0–680	95	35	
Fy	2100	681-1310	125	80	
± Fz	2100	1311-2065	150	105	
		2066-2830	170	125	
Load moment	dynam. [Nm]	2831-3590	195	150	
Mx	150	3591-4355	215	170	
My ¹⁾	180	4356-5000	235	190	
MZ ¹⁾	180				
¹⁾ Increase of the adr	missable values by th	ne use of an additional free-sli	ding power br	ridge (see pa	ige 56).

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–680	95	35	350
681-1310	125	80	425
1311-2065	150	105	475
2066-2830	170	125	515
2831-3590	195	150	565
3591-4355	215	170	605
4356-5000	235	190	645

WIESEL *POWER Line*[®] **WM80** with ball screw drive and integrated linear ball-recirculating guide system

Technical data

	Linear speed: Repeatability: Acceleration: Rotational speed: Drive element: Diameter: Lead: Stroke length:	max. 2.5 m/s ± 0.01 mm max. 20 m/s ² max. 3000 rpm Pretensioned ball screw 25 mm 5, 10, 20, 50 mm with pitch 50 mm max. 5000 mm
•	Power bridge:	. 280 or 450 mm long
•	Geometrical moment of inertia:	ly 1.9 · 10 ⁶ mm ⁴ lz 1 9 · 10 ⁶ mm ⁴
•	Weights Basic unit with zero stroke: 100 mm stroke: Power bridge with carriage: Provided:	11.57 kg 1.08 kg 4.26 kg with 4 pieces KAO mounting brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]			
	5	10	20	50
150	0.8	1.4	1.6	2.3
1500	1.4	1.9	2.0	2.8
3000	1.8	2.3	2.3	3.4

Note: For tube lengths of 6300 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's specification. For screw leads > 20 mm, excess lengths cannot be implemented.

Loads and load moments

	•MX •F
+Mz	-FY
+F2	

5		
	Load	dynam. [N]
	Fx Drive	5000
	Fy	3000
	± Fz	3000
	Load moment	dynam. [Nm]
	Mx	350
	My ¹⁾	300
	Mz ¹⁾	300

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–780	120	80	500
781–1535	170	125	595
1536–2375	190	145	635
2376-3205	215	170	685
3206-4045	235	190	725
4046-4885	255	210	765
4886-5000	280	235	815

Order code see page 124

¹⁾ Increase of the admissable values by the use of a long power bridge or additional free-sliding power bridge (see page 55, 56).

WIESEL POWER Line® WM120

with ball screw drive and integrated linear ball-recirculating guide system

Technical data

•	Linear speed:	max. 2.0 m/s
•	Repeatability:	. ± 0.01 mm
•	Acceleration:	. max. 20 m/s ²
•	Rotational speed:	max. 3000 rpm
•	Drive element:	Pretensioned ball screw
	Diameter:	. 32 mm
	Lead:	5, 10, 20, 40 mm
•	Stroke length:	up to 11.000 mm
		with pitch 40 mm
		max. 5000 mm
•	Power bridge:	. 320 or 500 mm long
		see page 55
•	Geometrical moment of inertia:	ly 7.7 · 10 ⁶ mm ⁴
		lz 9.4 · 10 ⁶ mm ⁴
•	Weights	
	Basic unit with zero stroke:	. 25.91 kg
	100 mm stroke:	1.93 kg
	Power bridge with carriage:	_ 9.25 kg
•	Provided:	with 4 pieces KAO mounting
		brackets

Idle torques [Nm]

Rotational speed [rpm]		Lead P	[mm]	
	5	10	20	40
150	1.2	2.1	1.8	2.4
1500	2.3	3.0	2.8	3.6
3000	2.8	3.8	3.5	4.0

Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's specification. For screw leads > 20 mm, excess lengths cannot be implemented.

Loads and load moments

Load	dynam. [N]	Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
Fx drive	12000	0–890	155	100	595
Fx drive 3240	8000	891–1695	225	170	735
Fy	6000	1696–2625	260	205	805
± Fz	6000	2626-3555	295	240	875
Load moment	dynam. [Nm]	3556-4485	330	275	945
Mx	500	4486-5000	365	310	1015
My ¹⁾	600				
Mz ¹⁾	600				
"Increase of the admissable values by the use of a long power bridge or additional free-sliding power bridge (see page 55, 56).					

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–890	155	100	595
891–1695	225	170	735
1696–2625	260	205	805
2626-3555	295	240	875
3556-4485	330	275	945
4486–5000	365	310	1015

Order code Seite 124

48

WIESEL POWERLine® Guide tube

WIESEL POWERLine* WIESEL DYNALine*

WM40-190

WM60-190

WIESEL POWERLine® Guide tube

WM80-190

WM120-190

WIESEL DYNALine® WV60 with ball screw drive

Technical data

:	Linear speed: Repeatability:	max. 2.5 m/s + 0.01 mm
•	Acceleration:	max. 20 m/s ²
•	Rotational speed:	max. 3000 rpm
•	Drive element:	Pretensioned ball screw
	Diameter:	20 mm
	Lead:	5, 20, 50 mm
•	Stroke length:	up to 11.000 mm
		with pitch 50 mm
		max. 5000 mm
•	Power bridge:	200 mm long
		see page 55
•	Geometrical moment	
	of inertia:	ly 5.8 · 10 ⁵ mm ⁴
		lz 5.9 · 10 ⁵ mm ⁴
	Weights	
	Basic unit with zero stroke:	4.72 Kg
	100 mm stroke:	0.55 Kg
	Power bridge with carriage:	1.42 Kg
		with 4 pieces KAU mounting
		DIALKELS

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]			
	5	20	50	
150	0.6	0.7	0.8	
1500	1.1	1.2	1.3	
3000	1.5	1.7	1.9	

Note: For tube lengths of 6300 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's specifications. For screw leads > 20 mm, excess lengths cannot be implemented.

Feed force

Maximum feed force Fx: 4.000 N

Order code see page 124

Note: All loads and load moments must be absorbed by external guides.

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–690	130	80	430
691–1415	155	105	480
1416–2155	175	125	520
2156–2885	200	150	570
2886-3625	220	170	610
3626-4355	245	195	660
4356-5095	265	215	700

WIESEL POWERLine" WIESEL DYNALine"

WIESEL DYNALine[®] WV80 with ball screw drive

Technical data

- Linear speed: _____ max. 2.5 m/s
 Repeatability: _____ ± 0.01 mm
- Acceleration: ______ max. 20 m/s²
- Rotational speed: _____ max. 3000 rpm
 Drive element: _____ Pretensioned ball screw
- Diameter: ______ 25 mm Lead: ______ 5, 10, 20, 50 mm
- Stroke length: _____ up to 11.000 mm with pitch 50 mm
- Power bridge: ______ 200 mm long
- Geometrical moment
 see page 55
- of inertia: _____ ly 1.9 · 10⁶ mm⁴ lz 1.9 · 10⁶ mm⁴
- Basic unit with zero stroke: _____ 7.95 kg 100 mm stroke: _____ 0.99 kg
- Power bridge with carriage: 2.25 kg
 Provided: with 4 pieces KAO mounting brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]			
	5	10	20	50
150	1.0	1.0	1.1	1.2
1500	1.7	1.8	1.9	2.0
3000	2.2	2.3	2.4	2.6

Note: For tube lengths of 6300 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's specifications. For screw leads > 20 mm, excess lengths cannot be implemented.

Feed	forc	e
	-	

Maximum feed force Fx:

Note: All loads and load moments must be absorbed by external guides.

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]		
0–775	125	50	395		
776–1670	145	95	460		
1671–2505	170	115	505		
2506–3340	190	140	550		
3341–4175	210	160	590		
4176–5015	235	180	635		

WIESEL DYNALine® WV120 with ball screw drive

Technical data

	Linear speed: Repeatability:	max. 2.0 m/s ± 0.01 mm
•	Acceleration:	max. 20 m/s ²
•	Rotational speed:	max. 3000 rpm
•	Drive element:	Pretensioned ball screw
•	Diameter:	32 mm
	Lead:	5, 10, 20, 40 mm
•	Stroke length:	up to 11,000 mm
		with pitch 40 mm
		max. 5000 mm
•	Power bridge:	250 mm long
		see page 55
•	Geometrical moment	
	of inertia:	ly 7.7 · 10 ⁶ mm ⁴
		lz 9.4 · 10 ⁶ mm ⁴
•	Weights	
	Basic unit with zero stroke:	18.1 kg
	100 mm stroke:	1.94 kg
	Power bridge with carriage:	4.75 kg
•	Provided:	with 4 pieces KAO mounting
		brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]							
	5	10	20	40				
150	1.0	1.0	1.1	1.2				
1500	2.1	2.2	2.3	2.5				
3000	2.4	2.6	2.7	3.0				

Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's specifications. For screw leads > 20 mm, excess lengths cannot be implemented.

Feed force

Maximum feed force Fx: 12.000 N 8.000 N drive 3240 with ball screw

Note: All loads and load moments must be absorbed by external guides.

Additional lengths as a function of the stroke

	•		
Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–940	145	50	465
941–1860	180	120	570
1861–2790	215	155	640
2791–3720	250	190	710
3721–4650	285	225	780
4651-5000	320	255	845

Accessories for WIESEL POWERLine[®], WIESEL DYNALine[®] Mounting brackets

KAO Mounting brackets

The WIESEL® unit is secured to mounting surface by means of the KAO mounting brackets which are inserted in the grooves provided in the sides of the tubular aluminium profile and screwed onto the mounting surface with the aid of cylinder head screws. The number of mounting brackets required depends on the load and overall length of the WIESEL® unit. It is shown in the diagrams. Increasing side forces reduce the distance between supports.

Each unit is provided with 4 pieces KAO Mounting brackets.

Tightening torque of the attachment screws

Size	Torque [Nm]*
WM40	5.4
WM/WV60	9
WM/WV80	9
WM/WV120	19–22

* for cylinder head screw DIN ISO 4762-8.8 unoiled on aluminium

KAO System brackets

Only needed for WH40 and WM60. With multi-coordinate arrangements of several WIESEL® units, this can be used to mount a WIESEL® directly to the power bridge of a unit positioned immediately below.

Note:

It is advisable to secure the linear drive unit at intervals of at least 750 mm. This ensures that all the permissible loads can be borne without significantly deforming the tubular aluminium profile.

	Dimensions [mm]												
Size	A	В	C	D	ØE	F	ØG	Н					
WM40	54	16	10	40	10	5.7	5.5	7					
WM/WV60	68	17.5	17	50	11	6.5	6.6	7					
WM/WV80	68	17.5	17	50	11	6.5	6.6	7					
WM/WV120	80	25	18	50	15	8.5	9	10					
WM40 System KAO	40	16	10	26	10	5.7	5.5	7					
WM60 System KAO	58	17.5	17	40	11	6.5	6.6	7					

Accessories for WIESEL POWERLine®

Long power bridge

Size	Δ kB	Length of power bridge [mm]	My [Nm]	Mz [Nm]
WM40 - 000	50	210	50	50
WM60 - 000	190	450	500	500
WM80 - 000	170	450	750	750
WM120 - 000	180	500	1500	1500

Note:

All other limit values are comparable to those of versions with standard power bridge.

Note:

High load moments lead to major deformation of the tubular aluminum profile. The distance between supports should be reduced in order to minimize this deformation. The force must be applied only in the area of the tapped holes.

Accessories for WIESEL POWER Line® Additional free-sliding power bridge

OKB Additional freesliding power bridge

The additional free-sliding power bridge provides:

- Individual increase of the load moments My and Mz of a WIESEL® unit.
 Load moment My is limited by force ± Fz; Mz is limited by force ± Fy.
- Longer and therefore improved guidance.
- Particularly suitable as a vertical guide and lifting module.

The required center distance between the driven and the free-sliding power bridge is calculated as follows:

$$L_A = \frac{M}{F_{max}}$$

- L_A = Distance between center of driven power bridge and center of free-sliding power bridge [mm]
- M = Load moment My or Mz [mm]
- F_{max} = Maximum force Fz or Fy of the WIESEL® unit concerned [N]

The center distance between the two power bridges must be taken into account when calculating the overall length of the WIESEL® unit.

Overall length of the WIESEL[®] $L_{tot} = Stroke + C + L_A$

C = Specific additional length [mm] (see technical data of the respective WIESEL®) Minimum center distance between driven and free-sliding power bridge (given for standard power bridge)

Size	L _A [mm]						
WM40*	min	max					
	175	600					
WM60	335						
WM60-370	25	55					
WM60-370 ZRT	215						
WM80	36	60					
WM80-370	28	30					
WM80-370 ZRT	2′	15					
WM80 ZRT	3′	10					
WM120	45	50					

* For stroke lengths of more than 1700 mm please contact our product specialists for the maximum screw rotational speed.

The required force to move the additional free sliding power bridge must be taken into account when selecting the drive.

Size	F [N]						
WM40	40						
WM60	200						
WM60-370	180						
WM60-370 ZRT	180						
WM80	250						
WM80-370	225						
WM80-370 ZRT	225						
WM80 ZRT	250						
WM120	300						

Note: High load moments lead to major deformation of the tabular aluminium profile. In order to minimize this deformation, the distance between the fixing points should be reduced.

Bestell-Code Seite 124

Accessories for WIESEL *POWER*Line[®]. WIESEL *DYNA*Line[®]

Bevel gearbox

KRG Bevel gearbox

Bevel gearboxes are used to install a motor at right angles to the linear drive unit or to operate two linear drive units in parallel. A specific gearbox size is assigned to each WIESEL® model. The two gearbox sizes Ba 53 and Ba 40 with transmission ratios of 1:1 and 2:1 are available as standard.

Technical data (for both versions)

Size	ize M _{max} Output [Nm]		n _{max} Input	M _i [Ni	dle M]	Gear factor η	i = ′	J [kgcm ²] i = 1:1 $i = 2:$		2 : 1	:1 i = 1:1		Weight [kg] 1 i = 2:1		Max.angular backlash
	1:1	2:1	[1/min]	Ba 40	Ba 53		Ba 40	Ba 53	Ba 40	Ba 53	Ba 40	Ba 53	Ba 40	Ba 53	[angular min]
VLO	10	-	3000	0.10	0.20	0.97	0.62	0.88	0.20	0.41	2.0	2.50	2.00	2.50	10
VL1	28	28	3000	0.15	0.30	0.97	3.58	3.96	0.88	1.26	5.50	6.50	5.50	6.50	10
VL2	60	60	3000	0.30	0.50	0.97	12.02	13.69	4.21	5.88	12.00	15.00	12.00	15.00	10

M_{max} = Maximum torque at the output shaft [Nm]

n_{max} = Maximal input speed [rpm]

ed M_{idle} = Idle torque [Nm]

J = Mass inertia referred to the input shaft [kgcm²]

Mounting position

WIESEL® gearbox VL-Ba 40

		Dimensions [mm]										
WIESEL®- model/gearbox	а	b	С	d1	f1	g2	k	1	m	р	t	Х
WM40-VL0-Ba 40	65	44	44	12	100	11.5	M6	26	2	22.5	54	113
WM/WV60-VL1-Ba 40	90	90	60	18	122	12	M8	35	2	35	75	144
WM/WV80-VL1-Ba 40	90	90	60	18	122	12	M8	35	2	35	75	144
WM/WV120-VL2-Ba 40	120	120	80	25	162	15	M10	45	2	50	100	185

Direction of rotation

WIESEL POWERLine* WIESEL DYNALine*

Accessories for WIESEL POWERLine[®], WIESEL DYNALine[®]

Bevel gearbox

Mounting position

WIESEL® gearbox VL-Ba 53

		Dimensions [mm]										
WIESEL®- model/gearbox	а	b	С	d1	f1	g2	k	1	m	р	t	Х
WM40-VLO-Ba 53	65	44	44	12	100	11.5	M6	26	2	22.5	54	113
WM/WV60-VL1-Ba 53	90	90	60	18	122	12	M8	35	2	35	75	144
WM/WV80-VL1-Ba 53	90	90	60	18	122	12	M8	35	2	35	75	144
WM/WV120-VL2-Ba 53	120	120	80	25	162	15	M10	45	2	50	100	185

Direction of rotation

Motor right

Accessories for WIESEL POWERLine[®], WIESEL DYNALine[®] Universal joint shaft

GX Universal joint shaft

The GX universal joint shaft connects two WIESEL® units with ball screw drive and mounted bevel gearboxes in parallel.

The universal joint shaft transmits the torque from one WIESEL® to another. Long connecting shafts should be supported over their length. The required pillow blocks are available on request.

Universal joint shaft GZ: on request. For high demands on quiet running and speed (center part with essentric ring).

WM40-VL0 GX1 with DKWN tensioner L=AA-210 WM/WV60-VL1 Ba53/VL1 Ba40 GX2 with 2 DKWN tensioners L=AA-255 WM/WV80-VL1 Ba53/VL1 Ba40 GX4 with 2 DKWN tensioners L=AA-259 WM/WV120-VL2 Ba53/VL2 Ba40 GX8 with 2 DKWN tensioners L=AA-353 Dimensions AA for execution with key way on request

Technical Data

Size	M11)	M2 ²⁾	m1 ³⁾	m2 ⁴⁾	J1 ⁵⁾	J2 ⁶⁾	M _A ⁷⁾
GX1	10	21	0.47	1.05	2.68	2.15	1.2
GX2	30	60	1.06	1.42	13.8	5.29	4.9
GX4	60	75	2.31	1.61	21.4	7.63	4.9
GX8	120	200	3.55	2.16	78	18.58	16.5
¹⁾ Transmittable torque [Nm]	³⁾ Weight without m	niddle part [kg]	⁵⁾ Mass inertia	a of the two	⁷⁾ Star	ting torque of the	-

²⁾ Max. torque on the tensioning element [Nm] ⁴⁾ Weight of middle part in [kg/m]

connectors [kgcm²] ⁶⁾ Mass inertia of the shaft [kgcm²/m] Starting torque of the tensioning screws of the DKWN tensioning element [Nm]

Execution with tensioner (standard)

Size	Dimensions [mm]								
	A	В	d ₁	d ₂	d ₃	d ₄	L ₂	N ₂	R
GX1	24	7	12	22	56	56	24	36	30
GX2	24	8	18	35	85	88	28	55	40
GX4	28	8	18	36	100	100	30	65	45
GX8	32	10	25	47	120	125	42	80	60

Order code see page 124

Execution with key way (on request)

Size	Dimensions [mm]								
	A	В	d _{2min.}	d _{2max.}	d3	d ₄	L ₂	N ₂	R
GX1	24	7	10	25	56	56	24	36	30
GX2	24	8	14	38	85	88	28	55	40
GX4	28	8	16	45	100	100	30	65	45
GX8	32	10	20	55	120	125	42	80	60

Accessories for WIESEL POWERLine®

Universal joint shaft/Parallel belt drive

GX Universal joint shaft for WM-ZRT

Technical data

Size	M1 ¹⁾	M2 ²⁾	m1 ³⁾	m24)	J1 ⁵⁾	J2 ⁶⁾	M _A ⁷⁾
GX2	30	60	1.06	1.42	13.8	5.29	4.9
GX4	60	75	2.31	1.61	21.4	7.63	4.9

¹⁾ Transmittable torque [Nm]

²⁾ Max. torque on the tensioning element [Nm]

Parallel belt drive

one motor in parallel.

Application:

with drive

solutions

With the parallel belt drive two

WIESEL® WM 40 can be driven by

In parallel, wide guide system

Basis for multi-coordinate

Adjustable in parallel stops

³⁾ Weight without middle part [kg]
 ⁴⁾ Weight of middle part in [kg/m]

5) Mass inertia of the two connectors [kgcm²]

⁶⁾ Mass inertia of the shaft [kgcm²/m]

⁷⁾ Starting torque of the tensioning screws of the DKWN tensioning element [Nm]

Technical data

Туре	M _{max.} [Nm]	
PRT40	4.4	

Accessories for WIESEL POWERLine®, WIESEL DYNALine® Timing belt drive

RT Timing belt drive

The RT 40/60/80 belt drive is a transmission designed to minimize the overall length. The RT housing (which is both belt guard and motor support) can be mounted in positions offset by 90°. The drive is provided via standard toothed belt drives. Transmission ratios of i = 1:1 and i = 2:1 are possible. (RT 40 only i = 1:1)

Technical data

Size	M _{max} [Nm]	n _{max} Input [rpm]	M _{idle} [Nm]	Efficiency η	Mass inertia J [kgcm ²] 1 : 1	Weight [kg] 1 : 1
RT40	1.75	3000	app. 0.3	0.8	0.25	0.62

Technical data

Size	M _{max} [Nm]	n _{max} Input [rpm]	M _{idle} [Nm]	Efficiency η	Mass inerti	a J [kgcm ²] 2 : 1	Weight 1 : 1	[kg] 2 : 1
RT60	15	3000	app. 0.7	0.85	4.38	10.11	5.6	7.1
RT80	30	3000	app. 0.7	0.85	4.65	10.38	5.5	7.0

 M_{max} = Maximum torque at the output shaft [Nm]

n_{max} = Maximum input speed [rpm]

M_{idle} = Idle torque [Nm]

J = Mass inertia referred to the input shaft [kgcm²]

Accessories for WIESEL POWERLine[®], WIESEL DYNALine[®] Mechanical limit switches

ES Mechanical limit switches

Mechanical limit switches must be used wherever people may be jeopardized if the electric drive does not cut out. They are fitted in the groove which also accommodates the KAO mounting brackets in the aluminium profile. Depending on the size, the switch is adjusted with the help of a slot (as shown) or by shifting the holder (with switch) in the groove for the KAO strip.

Technical data

CAM-actuated mechanical limit switch XCM-B516 with roller lever. Dual-circuit NC + NO NC contact forcibly opened in accordance with DIN EN 60 204 Type of protection: IP 67 Max. perm. starting speed: 1.5 m/s Cable length: 1 m, Id.-Nr. 6715450281 5 m, Id.-Nr. 6715450290 10 m, Id.-Nr. 6715450299

Baugröße	Abmessungen [mm]						
	A	B C D E				1	=
						WM	WV
WM/WV60	40	69	32	38	50	63	33
WM/WV80	40	73	32	42	50	79	39
WM/WV120	40	89	32	58	50	94	59

Note:

The linear unit can not be fixed by means of the mounting brackets KAO in the range of the fixing plates for the mechanical limit switches. Security limit switches serve to cut off energy from the drive for sure. Whenever they are running at high speeds, they can not avoid driving over the admissible drive section. It is necessary to ensure by means of other drive and control measures that the limit areas are only approached at low speeds.

Accessories for WIESEL POWERLine[®], WIESEL DYNALine[®] Shaft encoder attachment

WIESEL POWERLine* WIESEL DYNALine*

ADG Shaft encoder IG601 mounted on WM40 95 attachment for 1 **POWER**Line[®] with ball screw drive on movable bearing side 54 Shaft encoder attachment for **POWER**Line[®] with tooth belt drive see p. 31. 35 ø58 Incremental shaft encoders can be used in combination with screws to measure displacement. This is achieved by IG-601 WM40 mounting the shaft encoder on the movable bearing end of the WIESEL® shaft. IG601 mounted on WM/WV60 IG601 incremental shaft encoders with pulse counts between 100 and 2500 are used 95 by NEFF, as standard elements. Two output circuits are basically 65,5 possible: - GE = Push-pull output, 10-30 V ø58 - LD = Line driver, antivalent, as per RS 422 (5V ± 10%) 60 Detailed information can be IG-601 found on page 109. WM/WV60 The shaft encoder is connected to the WIESEL® via a two-piece adapter flange and a coupling. IG601 mounted on WM/WV80 It can be adjusted to the required reference point (1) by loosening the threaded studs. Absolute-value encoders on request. ø58 80 IG-601 WM/WV80 IG601 mounted on WM/WV120 95 25 ø58 120

IG-601

WM/WV120

Bestell-Code Seite 124

Equipment for blister packaging for tooth brushes, Koch Company, Pfalzgrafenweiler, Germany

65

Mechanical linear drive units WIESEL VARIOLine®

NEW WIESEL VARIOLine®

- Fully integrated handling unit with ball-recirculation guide system in the tabular section, robust ball bearing bushing on the piston rod and ball screw drive
- Absorption of high lateral forces
- Ready-to-install design with adjustable, integrated limit switches

WIESEL VARIOLine[®] (Profile sectional view)

WIESEL VARIOLine® WZ60

Antriebstechnik · Automation

with ball screw drive and integrated ball recirculating guide

Technical data

- Linear speed: _max. 1.5 m/s
- Repeatability: _± 0.02 mm
- Acceleration: _max. 20 m/s² _max. 3000 rpm Rotational speed:
- Single nut, low backlash Drive element:
- Diameter: 20 mm
- 5, 20, 50 mm Lead:
- _max. 400 mm • Stroke length:
- Geometrical moment of inertia: $_{ly} = 5.8 \cdot 10^{5} \text{ mm}^{4}$ $_{lz} = 5.9 \cdot 10^{5} \text{ mm}^{4}$ Weights
- Basic unit with zero stroke: _4.5 kg _0.77 kg 100 mm stroke:
- Mass to be moved without stroke: _1.8 kg
- Mass to be moved per 100 mm stroke:
- _0.26 kg with 4 pieces KAO mounting Provided: brackets

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]					
	5	20	50			
150	0.5	0.9	1,2			
1500	0.9	1.4	1.8			
3000	1.3	1.6	2.0			

Loads and load moments

WIESEL VARIOLine® WZ80 with ball screw drive and integrated ball recirculating guide

Technical data

- Linear speed: max. 1.5 m/s
- Repeatability: ± 0.02 mm max. 20 m/s² Acceleration:
- Rotational speed: max. 3000 rpm •
- Drive element: Single nut, low backlash •
- Diameter:_ 25 mm •
- Dialitecti: _______ 25 mini Lead: _______ 5, 10, 20, 50 mm
 Stroke length: ______ max. 500 mm
 Geometrical moment of interia: _ ly = 1.9 · 10⁶ mm⁴
 lz = 1.9 · 10⁶ mm⁴

		$12 = 1.9 \cdot 10 11111$
•	Weights	
	Basic unit with zero stroke:	7.5 kg
	100 mm stroke:	1.35 kg
	Mass to be moved without stroke:	3.0 kg
	Mass to be moved per 100 mm	
	stroke:	0.5 kg
•	Provided:	with 4 pieces KAO mounting
		brackets

Idle torques [Nm]

Rotational speed [rpm]		Lead P [mm]				
	5	10	20	50		
150	0.6	1.1	1.3	1.8		
1500	1.1	1.5	1.6	2.2		
3000	1.4	1.8	1.8	2.7		

Loads and load moments

+Fy	Load	dynam. [N]	
+My	Fx drive	3500	
-9	Fy	see diagram	
Fx *Mx +Mz	Fz	see diagram	
•Fz	Load moment	dynam. [Nm]	
Order code see page 124	Mx	150	

WIESEL VARIOLINE*

Accessories for WIESEL VARIOLine® Mounting brackets

В

KAO Mounting brackets

The WIESEL® unit is secured to mounting surface by means of the KAO mounting brackets which are inserted in the grooves provided in the sides of the tubular aluminium profile and screwed onto the mounting surface with the aid of cylinder head screws. The number of mounting brackets required depends on the load and overall length of the WIESEL[®] unit. It is shown in the diagrams. Increasing side forces reduce the distance between supports.

Each unit is provided with 4 pieces KAO Mounting brackets.

Tightening torque of the attachment screws

attachinent	SCIEWS											
Size	Torque [Nm]*											
WZ60	9.0											
WZ80	9.0											
* for cylinder he DIN ISO 4762-8 unoiled on alu	ead screw 3.8 Iminium											
Size			Dimensions [mm]									
	A	В	С	D	ØE	F	ØG	Н				
WZ60	68	17.5	17	50	11	6.5	6.6	7				
WZ80	68	17.5	17	50	11	6.5	6.6	7				

ØG

Accessories for WIESEL VARIOLine® Bevel gearbox

KRG Bevel gearbox

Bevel gearboxes are used to install a motor at right angles to the linear drive unit or to operate two linear drive units in parallel. A specific gearbox size is assigned to each WIESEL® model. The two gearbox sizes Ba 53 and

Ba 40 with transmission ratios of 1:1 and 2:1 are available as standard.

Technical data (for both versions)

Size	M _{max} n _{max} M _{idle} Output [Nm] Input [Nm]		Gear factor η	i = 1	J [kg 1 : 1	icm ²] i = 2 : 1		Weight [kg		t [kg] i = 1	2:1	Max.angular backlash			
	1:1	2:1	[1/min]	Ba 40	Ba 53		Ba 40	Ba 53	Ba 40	Ba 53	Ba 40	Ba 53	Ba 40	Ba 53	[angular min]
VL1	28	28	3000	0.15	0.30	0.97	3.58	3.96	0.88	1.26	5.50	6.50	5.50	6.50	10

 M_{max} = Maximum torque at the output shaft [Nm]

WZ60-VL1-Ba 40

WZ80-VL1-Ba 40

n _{max}	=	Maximal input speed
		[rpm]

M_{idle} = Idle torque [Nm]

J = Mass inertia referred to the input shaft [kgcm²]

Mounting position g2 WIESEL®-gearbox VL-Ba 40 х øt σ C 2 İ E ø d1 øс øb Dimensions [mm] WIESEL[®] -model/gearbox d1 g2 b f1 k 11 а С m p t х 90 2 90 60 18 122 12 M8 35 35 75 144 90 90 60 18 122 12 M8 35 2 35 75 144

WIESEL VARIOLINE*

Accessories for WIESEL VARIOLine® Bevel gearbox

Mounting position

WIESEL® gearbox VL-Ba 53

		Dimensions [mm]										
WIESEL® - model/gearbox	а	b	С	d1	f1	g2	k	1	m	р	t	х
WZ60-VL1-Ba 53	90	90	60	18	122	12	M8	35	2	35	75	144
WZ80-VL1-Ba 53	90	90	60	18	122	12	M8	35	2	35	75	144

WIESEL

WIESEL

Motor

Accessories for WIESEL VARIOLine® Timing belt drive/Mechanical limit switches

30

3000

 $M_{max}{=}$ Maximum torque at the output shaft [Nm] $n_{max}{=}$ Maximum input speed [rpm]

ES Mechanical limit switches

RT80

Mechanical limit switches must be used wherever people may be jeopardized if the electric drive does not cut out. The position of the mechanical limit switches cannot be changed retroactively.

Technical data

CAM-actuated mechanical limit switch XCM-B516 with roller lever. Dual-circuit NC + NO NC contact forcibly opened in accordance with DIN EN 60 204 Type of protection: IP 67 Max. perm. starting speed: 1.5 m/s Cable length: 1 m, ld.-Nr. 6715450281 5 m, ld.-Nr. 6715450290 10 m, ld.-Nr. 6715450299

 M_{ldle} = Idle torque [Nm] J = Mass inertia referred to the input shaft [kgcm2]

0.85

4 65

10.38

app. 0.7

7.0

WIESEL VARIOLINE

55

Note:

The linear unit can not be fixed by means of the mounting brackets KAO in the range of the fixing plates for the mechanical limit switches. Security limit switches serve to cut off energy from the drive for sure. Whenever they are running at high speeds, they can not avoid driving over the admissible drive section. It is necessary to ensure by means of other drive and control measures that the limit areas are only approached at low speeds.

Size	Dimensions [mm]									
	A	В	С	D	E	F				
WZ60	60	22.5	16	30	113	53				
WZ80	60	22.5	16	30	112	84				

Mesh, eye-forming and welding system; Draht- und Metallwarenfabrik Rothfuß GmbH in Hemmingen, Germany

Mechanical linear drive unit WIESEL® W0

WIESEL® W00, W02

- Rigid aluminium profile with guide slot
- Power bridge with external sliding guide
- Completely protected precision screw drive
- High speeds thanks to patented spindle supports
- Available with ball screw drive or trapezoidal screw drive

and a second	WIESEL® W00, W02 (profile secti	ional view)	- 59		0. W02
WOO		W02			W.IESEL® WC
	Tolerances of outer dimensions according to DIN 17615 part 3	NEFF	WIESEL	5	Ì
		State of the second	12 2 S		

WIESEL[®] WOO with ball screw drive and sliding guide

Technical data

- Linear speed: _____ max. 0.25 m/s
- Rotational speed: _____ max. 3000 rpm
 Drive element: _____ Ball screw drive
- Diameter: ______ 12 mm
- Lead: _____ 5 mm
- Geometrical moment
- of inertia: ______ ly 9.76 · 104 mm4 lz 9.26 · 104 mm4 • Weights Base without stroke: _____ 2.00 kg

BS	ise without str	оке:	2.00 Kg
10	0 mm stroke:		0.20 kg
Са	rriage:		0.20 kg

Trapezoidal screw drive on request (4, 8 and 12 mm pitch)

Load and load moments

dynam. INI
200
200
250
dynam. [Nm]
6
15
10

Order code see page 126

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]	
	4	5
150	0.20	0.20
1500	0.35	0.35
3000	0.5	0.5

Extra length with end dampers

Length [mm]	L _{ED} [mm]
30	2 ED

Theoretical critical rotational speed

WIESEL® W02 with ball screw drive and sliding guide

Technical data

•	Linear speed:	max. 1 m/s
•	Repeatability:	± 0.05 mm

Repeatability:	±	(

 Acce 	leration:	
Sing	le lead nut	₋ max. 5 m/s ²
Doul	ole lead nut	_ max. 10 m/s ²
 Rota 	tional speed:	_ max. 3000 rpm
Drive	e element:	Ball screw drive
Diam	neter:	_ 20 mm
1		E 00

Lead:	5 or 20 mm
Stroke length:	40 up to 5200 mm
Power bridge:	212 mm long
 Geometrical moment 	

of inertia:	ly 6.52 · 10 ⁵ mm ⁴
	lz 5.99 · 10 ⁵ mm ⁴
 Weights 	

Base without stroke:	3.60 kg
100 mm stroke:	0.70 kg
Carriage:	0.60 kg

Trapezoidal screw drive on request (4, 8 and 16 mm pitch)

Load and load moments

	Load	dynam. [N]
i.	Fx drive 2005	2500
Ϊ.	Fx drive 2020	1500
	Fy	500
	±Fz	650
	Load moment	dynam. [Nm]
	Mx	30
	My	70
	Mz	50

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm]					
	MM 5	MM 20	M 5	M 20		
150	0.75	1.00	0.50	0.70		
1500	1.30	1.50	1.00	1.35		
3000	1.75	2.00	1.50	1.80		

Additional length with spindle support and end dampers

Length [mm]	L _{SA} [mm]	L _{ED} [mm]
30	4 SA	-
60	6 SA	-
70	-	2 ED

SA-diagram

WIESEL® W00. W02

Accessories for WIESEL® WO

Mounting bracket

WBL Mounting brackets

The WBL mounting brackets are designed for situations where a screw connection from below is not possible. They are to be used to mount WIESEL® units on pedestals and as a base for the MU central supports (2 WBL for 1 MU).

Size	Dimensions [mm]							
	AH	AJ	AK	CJ	СК			
W00	60	7	72	20	10			
W02	92	9	108	30	12			

Deflection W00, W02

Accessories for WIESEL® WO Central support

MU Central support

The MU central support is an additional support for the WIESEL® cylinder, in order to prevent deflection. In addition, the MU central support can also be used solely for mounting purposes, in which case it must be attached near to the fixed or moving bearing.

The number of central supports depends on the WIESEL® length (see MU diagram). Increasing transverse forces (Fy, Fz) reduces the distance between supports.

Size	Dimensions [mm]								
	AH	AJ	AK	AO	AP	AQ	AR	FB	S
W00	60	6.6	72	80	60	15.5	4.5	49	25.3
W02	92	9	108	120	90	24	6.5	74	39.0

WIESEL® W00. W02

Accessories for WIESEL® WO Bevel gearbox/Parallel drive belt system

KRG Bevel gearbox

Bevel gearboxes are used to install a motor at right angles to the linear drive units, or to drive two linear units parallel to each other.

Technical data

Size	Torque	e [Nm]	Gear factor efficiency η	Noise [dBA]	Oil content ZGHVI 32
	idle	max.			
W02	0.60	25	0.80	65–75	60 ml

PRT 611 Parallel drive belt system for W00/W02

Two WIESEL® are connected by a parallel belt drive (PRT) to one motor.

Application:

- parallel, wide guides with
- driveBasis for multi-coordinate systems
- Stops slidable in parallel

Туре	Dimensions [mm]										
	GA _{min.}	GA _{max.}	GC	GD	GE	GF	GH	GI	GM	[Nm]	
W00	300	1000	35	50	30	61	25	25	0	12	
W02	400	2000	60	100	50	60	38	39	200	12	

Accessories for WIESEL® WO Parallel drive belt system/Universal joint shaft

GX Universal joint shaft for W02 The GX universal joint shaft connects two WIESEL® units Center distance AA with ball screw drive and topmounted bevel gearboxes in Bikon tensioning element parallel. The universal joint shaft transmits the torque from one WIESEL® to another. Universal Long connecting shafts should ioint shaft G> be supported over their length. The required pillow blocks are available on request. Length L of Universal joint shaft GZ: joint shaft on request - for high demands on quiet running and speed (center part with essentric ring). Gear KLL W02 GX2 with DKWN tensioner L = AA-180 **Technical data** M2²⁾ m24) M1¹⁾ m1³⁾ J1⁵⁾ J2⁶⁾ $M_{A}^{7)}$ Type d₂ 2 б Ŷ σ GX2 20 20 1.06 1.42 13.8 5.29 9.7 ¹⁾ Transmittable torque [Nm] ²⁾ Max. input torque on the tensioning element [Nm] 3) Weight without middle part [kg] 4) Weight of middle part [kg] 5) Mass inertia of the two connectors [kgcm²]

⁶⁾ Mass inertia of the shaft [kgcm²/m]

⁷⁾ Starting torque of the tensioning screws of the DKWN tensioning element [Nm]

Туре		Dimensions [mm]							
	А	В	d _{2min.}	d _{2max.}	d ₃	d ₄	L ₂	N ₂	R
GX 2	24	8	14	38	85	88	28	55	40

WIESEL® W00. W02

В

La

Accessories for WIESEL® WO

Timing belt drive

RT 880 timing belt drive for W00/W02

The RT 880 timing belt drive is a transmission designed to minimize the overall length. The RT housing (which is both belt guard and motor support) can be mounted in positions offset by 90°. The drive is provided via standard toothed belts. Transmission ratios: W00 i = 1:1 W02 i = 1:1 2:1 1:2 Permissible radial forces (without counter bearing) W00 50 N W02 150 N

Size		Dimensi	ons [mm]	Technical data		
	BM ¹⁾	BN	BO	BP	Max. Motor size	Transmission ratio i
W00	30	68	176	110	63 S B 14 – C 90 ²⁾	1 : 1
W02	40	80	243	128	63 L B 14 – C 90	1 :1; 2 : 1 ³⁾ ; 1 : 2

 Housing protrudes beyond fixed bearing ²⁾ W00: combined housing for motor size C80/90.
 If no motor specified centering dia.
 ³⁾ Max. shaft dia. at motor: 12 mm

53 mm – no mounting bores

Ratios: i = 1 : 1 2 : 1 3 : 1

Transmittable drive torque: max. 12 Nm

Size	M _{max.}	n _{max.} Input	Midle	Gear factor	Mass inertia				Weight [kg]	
	[Nm]	[1/min]	[Nm]	η	i = 1:1	i = 2:1	i = 3:1	i = 1:1	i = 2:1	i = 3:1
W02	12	3000	0.7	0.85	8.56	4.08	2.60	3.5	3.7	3.9

Accessories for WIESEL® WO Cage attachment for IG 601 shaft encoder on mechanical linear drive unit, Motor cage

Cage attachment for IG 601 shaft encoder for W00/W02

Incremental shaft encoders can be used in combination with screws to measure displacement. This is achieved by mounting the shaft encoder on the movable bearing end of the WIESEI® shaft.

The IG601 incremental shaft encoders with pulse counts between 100 and 2500 are used by NEFF, as standard elements. Two output circuits are basically possible:

-GE = Push-pull output,10-30 V

- LD = Line driver, as per RS 422 (phys.)

Detailed information see chapter "rotary encoder" page 109.

The shaft encoder is connected to the WIESEL® via a two-piece adapter flange and a coupling. It can be adjusted to the required reference point by loosening the threaded studs (1).

Absolute-value encoders on request.

MG motor cage for W00/W02

The motor cages are used to mount motors on linear drive units, gearboxes, bearing units, pumps etc. They also serve as housings for couplings for connecting the motors and drive shafts of the units to be driven.

Product/Type/Size

WIESEL® W00. W02

Product/Type/Size	Dimensions [mm]														
	B1	D ₁	D ₂	D3	D ₄	D ₅	D ₆	D ₇	d ₁	d ₂	L ₁	L ₂	L3	L ₄	L ₅
MG W00-C 80	45	80	50	33	40	38	50	65	5.5	5.5	45	10	9	3	3
MG W00-C 90	45	90	60	33	40	38	50	75	5.5	5.5	45	10	9	3	3
MG W02-C 80	66	80	50	46	56	50	65	70	5.5	6.6	70	10	10	3	3
MG W02-C 90	66	90	60	46	56	50	70	75	5.5	6.6	70	10	10	3	3
MG W02-C 105	66	100	70	46	56	50	70	85	6.6	6.6	70	10	10	3	3
MG W02-NMT 30	66	100	60	46	56	50	70	75	9.0	6.6	80	10	10	3.5	3
MG W02-C 120	66	120	80	46	56	50	70	100	6.6	6.6	80	10	10	3.5	3
MG W02-C 140	66	140	95	46	56	50	70	115	9.0	6.6	80	10	10	3.5	3
MG W00 blank	45	92	-	33	40	38	50	-	-	5.5	46	11	9	-	3
MG W02 blank	66	120	-	46	56	50	70	-	-	6.6	71	11	10	-	3
MG W02 blank	66	140	-	46	56	50	70	-	-	6.6	81	11	10	-	3

Packaging system for mint product (Cool mint Listerine – Oral care strip) Company Koch Pfalzgrafenweiler/Germany

Modular linear system WIESEL FORCELine®

WIESEL FORCELine® WIESEL FORCELine® MLSH60 ZRT WIESEL FORCELine®

- Fully integrated linear drive unit with toothed belt drive and roller guide
- High dynamics for the different requirements of the handling and assembly industry.
- Fully integrated linear drive unit with ball screw drive and linear ball recirculating guide
- Absorption of high loads and load moments for processing applications in mechanical engineering

WIESEL FORCELine®

with ball screw drive or tooth belt drive

WIESEL FORCELine® MLSM60 KGT

Fully integrated linear drive unit with ball screw drive and linear ball recirculating guide system for the absorption of high loads and load moments for processing applications in mechanical engineering.

Tension of toothed belt

The toothed belt can be retensioned comfortably without dismounting the load. Thus reducing your service costs.

Patented sealing strip The panteted sealing strip

protects the mechanism effectively from dirt. This encreases the liability of your machine also under agressive environmential conditions.

Preloaded ball screw drive

Preloaded ball screw drive with double nut.

Integrated guide system

The powerfull ball recirculating guide system has been integrated into the profile in an angle of 45°. The optimum force introduction guarantees high forces and moments and give the axis high power density.

WIESEL FORCELine® MLSH60 ZRT

Fully integrated and protected linear drive unit with toothed belt drive and roller guide for the most varied applications in the area of handling and assembly.

Preloaded ball screw drive with integrated ball recirculating system

The powerfull ball recirculating has been integrated into the profile at an angle of 45°. Together with the precise ball screw drive this ensures a high power density and stiffness.

Central lubrication

The linear guide system of the ball screw type is conveniently relubricated from a central point. Whether by hand or automatically, maintenance is now a simple matter.

Screw support

The patented screw support system permits high speeds (max. input speed) at long strokes, and has been optimized even more.

Roller guide

The reliable, robust roller guide system has been integrated into the profile at an angle of 45°. This allows high dynamics at high loads and load moments.

ATL toothed belt The ATL toothed belt combines high dynamics and high precision. With its steel reinforcement it is specially suitable for linear drive units.

Dynamic toothed belt drive with robust roller guide

The robust roller guide system has been integrated at an angle of 45°. Together with the ATL toothed belt this ensures high dynamics. The overall protected design with the patented cover strip ensures the reliability of your machine.

WIESEL FORCELine® MLSH60 ZRT with roller guideway and ATL toothed belt

Technical data

- Linear speed: max. 6.5 m/s
- Repeatability: ± 0.05 mm
- Acceleration: max. 40 m/s²
- Toothed belt 32 ATL5 • Drive element:
- Pully Diameter: 42.97 mm • Stroke per revolution: . 135 mm
- Max. Stroke: max. 5500 mm
- Power bridge: 280 mm long,
- see page 89
- Geometrical moment of inertia: $_{ly} = 1.29 \cdot 10^{6} \text{ mm}^{4}$ $Iz = 1.20 \cdot 10^7 \text{ mm}^4$ Woights

weights:	
Base unit with zero stroke:	_ 12.60 kg
100 mm stroke:	1.33 kg
Power bridge with carriage:	3.90 kg

with 4 pieces KAO mounting • Provided: brackets

My

Mz

Load	dynam. [N]
Fx drive	1480
Fy	3000
± Fz	3000
Load moment	dynam. [Nm]
Mx	165

310

310

Order Code see page 1	25
-----------------------	----

shafts:	
Drivo chafte (Dotail	ad docc

Drive shafts (Detailed description see page 123)

Idle torgues [Nm]

Rotational speed [rpm]	M _{idle} [Nm]
150	5
1500	9
3000	12

WIESEL FORCELine® MLSM60 KGT

with ball screw drive and integrated ball recirculating guide system

Technical data

Linear speed: Depertability:	max. 2.5 m/s
 Repeatability: Accoloration: 	± 0.01 max 20 m/s ²
Acceleration speed:	$_{1110}$ $_{2011}$ $_{20$
Rolation speed:	
Drive element:	Precensioned Dall Screw
	with double hut
 Diameter: 	_ 25 mm
Leads:	5, 10, 20, 50 mm
 Max. Stroke:	_ max. 5500 mm
Power bridge:	280 mm long
	see page 89
 Geometrical moment of inertia: 	$Iy = 1.19 \cdot 10^{6} \text{ mm}^{4}$
	$Iz = 1.08 \cdot 10^7 \text{ mm}^4$
 Weights: 	
Base unit with zero stroke:	14.40 kg
Weight per 100 mm stroke:	1.65 kg
Power bridge with guide:	5.70 kg
 Provided: 	with 4 pieces KAO mounting
	brackets

Idle torques [Nm]

Rotational	Lead P [mm]								
opeed april	5	10	20	50					
150	1.0	1.6	1.9	2.7					
1500	1.6	2.2	2.3	3.2					
3000	2.0	2.6	2.6	3.8					

WIESEL FORCELING*

Loads and load moments

	Load	dynam. [N]
×	Fx drive	5000
1	Fy	6000
	± Fz	6000
	Load moment	dynam. [Nm]
	Mx	400
	My	460
	Mz	460

Additional lenghts as a function of the stroke

Stroke lenght [mm]	A [mm]	B [mm]	C [mm]		
0 – 750	90	45	435		
751 – 1220	105	90	495		
1221 - 1980	125	110	535		
1981 – 2730	150	135	585		
2731 - 3490	170	155	625		
3491 – 4240	195	180	675		
4241 - 5000	215	200	715		
5001 - 5500	235	220	755		

Accessories WIESEL FORCELine® Mounting brackets

Mounting brackets KAO

The mounting brackets KAO serve for securing the WIESEL® unit to a mounting surface. They are inserted in the grooves provided in the sides of the tubular aluminium profile and screwed onto the mounting surface with the aid of cylinder head screws.

The number of mounting brackets required depends on the load and overall length of the WIESEL® unit. Increasing side forces reduce the admissible distance between the brackets.

4 Pieces of mounting brackets are delivered with each unit.

Note:

It is advisable to secure the linear drive unit at intervals of at least 750 mm. This ensures that all the permissible loads can be borne without significantly deforming the tubular aluminium profile.

Tightening torque [Nm][•] of the attachment screws

			Torque [Nm]*										
Size	A	В	С	D	ØE	F	øG	Н	[Nm]*				
MLS 60 KAO Standard	68	17.5	17	50	11	6.5	6.6	7	7.3 - 12				
MLS 60 KAO long	120	17.5	17	50	11	6.5	6.6	7	9.0				

* for black grub screw threaded part way 8.8 unoiled on aluminium

Additional fixing of the tubular section

For an additional fixing there are holes drilled on the bottom of the tubular section. The profile can be mounted:

- from below, threaded M8 (thread length 12mm)
- from inside (by lifting the cover strip) threaded M6, length of the tapped through hole: 12 mm

Accessories WIESEL FORCELine® Long power bridge

Size	ΔKb	Length of power bridge [mm]	My [Nm]	Mz [Nm]		
MLSM 60 KGT	170	450	940	940		
MLSH 60 ZRT	170	450	585	585		

Note: All other limit values are comparable to those of versions with standard power bridge. High load moments lead to major deformation of the tubular aluminium profile. The distance between supports should be reduced in order to minimize this deformation.

Accessories WIESEL FORCELine® Additional free-sliding power bridge

OKB Additional freesliding power bridge

The additional free-sliding power bridge provides:

- Individual increase of the load moments My and Mz of a WIESEL[®] unit.
 Load moment My is limited by force ± Fz, Mz is limited by force ± Fy.
- Longer and therefore improved guidance.
- Particularly suitable as a vertical guide and lifting module.

The required center distance between the driven and the free-sliding power bridge is calculated as follows:

$$L_A = \frac{M}{F_{max}}$$

- L_A = Distance between center of driven power bridge and center of free-sliding power bridge [mm]
- M = Load moment My or Mz [mm]
- F_{max} = Maximum force Fz or Fy of the WIESEL® unit concerned [N]

The center distance between the two power bridges must be taken into account when calculating the overall length of the WIESEL® unit.

Overall length of the WIESEL®: $L_{tot} = Stroke + C + L_A$

C = Specific additional length [mm] (see technical data of the respective WIESEL®) Minimum center distance between driven and free-sliding power bridge (given for standard power bridge)

Size	L _A [mm]
MLSH 60 KGT	290
MLSM 60 ZRT	320
The required for	ce to move the

additional free sliding power bridge must be taken into account when selecting the drive.

Size	F [N]
MLSH 60 ZRT	40
MLSM 60 KGT	270

Note:

High load moments lead to major deformation of the tubular aluminium profile. In order to minimize this deformation, the distance between the fixing points should be reduced.

Accessories for WIESEL FORCELine® Bevel gearbox

KRG Bevel gearbox

Bevel gearboxes are used to install a motor at right angles to the linear drive unit or to operate two linear drive units in parallel. A specific gearbox size is assigned to each WIESEL® model. The two gearbox sizes Ba 53 and Ba 40 with transmission ratios of 1:1 and 2:1 are available as standard.

Technical data (for both versions)

Size	M _r Outpu	^{nax} t [Nm]	n _{max} Input	M _{idle} [Nm]		Gear factor η	J [kgcm ²] i = 1 : 1 i =		J [kgcm ²] i = 1 : 1		$\begin{bmatrix} kgcm^2 \end{bmatrix} \\ i = 2:1$		i = 1	Weigh 1:1	t [kg] i = 1	2:1	Max. angular backlash
	1:1	2:1	[1/min]	Ba 40	Ba 53		Ba 40	Ba 53	Ba 40	Ba 53	Ba 40	Ba 53	Ba 40	Ba 53	[angular min]		
VL1	28	28	3000	0.15	0.30	0.97	3.58	3.96	0.88	1.26	5.50	6.50	5.50	6.50	10		
VL2	60	60	3000	0.30	0.50	0.97	12.02	13.69	4.21	5.88	12.00	15.00	12.00	15.00	10		

 M_{max} = Maximum torque at the output shaft [Nm]

 $n_{max} = Maximal input speed$ [1/min]

M_{idle} = Idle torque [Nm]

J = Mass interia referred to the input shaft [kgcm²]

WIESEL [®] -model/gearbox		Dimensions [mm]										
	а	b	С	d1	f1	g2	k	11	m	р	t	Х
MLSM 60 KGT-VL1-Ba 40	90	90	60	18	122	12	M8	35	2	35	75	143
MLSM 60 KGT-VL2-Ba 40	120	120	80	25	162	15	M10	45	2	50	100	170

Direction of rotation

WIESEL FORCELINE*

Accessories for WIESEL FORCELine® Bevel gearbox

Mounting position

WIESEL®-gearbox VL-Ba 53

WIESEL®-model/gearbox		Dimensions [mm]										
	а	b	С	d1	f1	g2	k	1	m	р	l t	X
MLSM 60 KGT-VL1-Ba 53	90	90	60	18	122	12	M8	35	2	35	75	143
MLSM 60 KGT-VL2-Ba 53	120	120	80	25	162	15	M10	45	2	56	100	170

Direction of rotation

Motor right

Motor left

Accessories for WIESEL FORCELine®

Universal joint shaft

GX Universal joint shaft for MLSH

The GX universal joint shaft connects two WIESEI® units with toothed belt drive (MLSH) or ball screw drive (MLSM) and mounted bevel gearboxes in parallel. The universal joint shaft transmits the torque from one WIESEl® to another. Long connecting shafts should be supported over their length. The required pillow blocks are available on request.

Universal joint shaft GZ: on request – for high demands on quiet running and speed (center part with eccentric ring).

Technical Data

Size	M1 ¹⁾	M2 ²⁾	m1 ³⁾	m2 ⁴⁾	J1 ⁵⁾	J2 ⁶⁾	M _A ⁷⁾
GX4	60	75	2.31	1.61	21.4	7.63	4.9
CX8	120	200	3.55	2.16	78	18.58	16.5
¹⁾ Transmittable torque [Nm] ²⁾ Max. torque on the tensioning element [Nm]	 Weight without r Weight of middle 	middle part [kg] e part in [kg/m]	 ⁵⁾ Mass inert connecors ⁶⁾ Mass inert 	ia of the two [kgcm2] ia of the shaft [kgc	⁷⁾ Star scre m2/m] eler	ting torque of the ews of the DKWN te ment [Nm]	tensioning ensioning

Accessories for WIESEL FORCELine® Universal joint shaft/Timing belt drive

Execution with tensioner (standard)

Size		Dimensions [mm]										
	A	В	d ₁	d ₂	d ₃	d ₄	L ₂	N ₂	R			
GX4	28	8	18	36	100	100	30	65	45			
GX8	32	10	25	47	120	125	42	80	60			

Execution with key way (on request)

Size	Dimensions [mm]									
	А	В	d _{2min.}	d _{2max.}	d3	d ₄	L ₂	N ₂	R	
GX4	28	8	16	45	100	100	30	65	45	
GX8	32	10	20	55	120	125	42	80	60	

RT Timing belt drive

The RT80 belt drive is a transmission designed to minimize the overall length. The RT housing (which is both belt guard and motor support) can be mounted in positions offset by 90°. The drive is provided via standard tooth belt drives. Transmission ratios of i = 1 : 1

and i = 2 : 1 are possible.

Technical data

Size	M _{max} [Nm]	n _{max} Input [rpm]	M _{idle} [Nm]	Efficiency η	Mass inerti 1 : 1	a J [kgcm ²] 2 : 1	Weigh 1 : 1	nt [kg] 2 : 1
RT80	30	3000	ca. 0.7	0.85	4.65	10.38	5.5	7.0

 $\label{eq:max} \begin{array}{l} M_{max} = \text{Maximum torque at the output shaft [Nm]} \\ n_{max} = \text{Maximum input speed [rpm]} \end{array}$

M_{idle} = idle torque [Nm] J = Mass inertia referred to the input shaft [kgcm²]

Accessories for WIESEL FORCELine®

Mechanical limit switches

ES Mechanical limit switches

Mechanical limit switches must be used wherever people may be jeopardized if the electric drive does not cut out. They are fitted in the groove which also accommodates the KAO mounting brackets in the aluminium profile. The adjustment of the limit switch is enabled by moving the bracket (incl. the switch) in the KAO-groove.

Technical data

CAM-actuated mechanical limit switch XCM-B516 with roller lever. Dual-circuit NC + NO NC contact forcibly opened in accordance with DIN EN 60 204 Type of protection: IP 67 Max. perm. starting speed: 1.5 m/s Cable length: 1 m, Id.-Nr. 6715450281 5 m, Id.-Nr. 6715450290 10 m, Id.-Nr. 6715450299

Note: In the area of the attachment plates for the mechanical limit switches, the linear unit cannot be attached with the KAO brackets. Safety limit switches serve to reliably switch off the power supply to the drive when the limit switch is actuated. If they are approached at high speed, they cannot prevent an overstepping of the permitted range of travel. Other drive or controlside measures must be taken to ensure that the area of the end positions is approached only at low speed.

Size	Dimensions [mm]									
	A	В	С	D	E	F				
MLSM60 KGT	40	73	32	42	104	50				
MLSH60 ZRT	40	73	32	42	104	50				

Accessories for WIESEL FORCELine® Shaft encoder attachment

ADG Shaft encoder attachment

G601 mounted on MLSH 60 ZRT

Incremental shaft encoders can be used to measure the linear travel of ball screws. This is achieved by mounting the shaft encoder on the movable bearing end of the WIESEL® shaft (MLSM). IG601 incremental shaft encoders with puls counts between 100 and 2500 are used by NEFF as standard elements. Two output circuits are basically possible: - GE = Push-pull output,

IG601 mounted on MLSM 60 KGT

10-30 V- LD = Line driver. antivalent, as per RS 422 (5V ± 10%)

Detailed information can be found on page 109.

The shaft encoder is connected to the WIESEL® via two-piece adapter flange and a coupling. It can be adjusted to the required reference point (1) by loosening the threaded studs.

Absolute-value encoders on request.

Drive technology Linear drive unit and electric drive from a single source – what do you get out of it?

Motors from NEFF complement the WIESEL® units to powerful compact drive packages. For high precision and dynamic applications the use of servo drives is recommended.

For applications with lower requirements three-phase AC-motors or spur geared motors can be used.

What you can gain from NEFF's drive technology:

Optimum price/performance ratio

System, linear drive unit and drive are all perfectly matched – everything from a single source.

Function reliability guaranteed!

Every drive is assembled, parameterized and subjected to a trial run at NEFF.

No hidden costs

Calculation, planning, choice of components and parameterization are all handled by NEFF.

One contact

For all drive questions from calculation up to maintenance and service you have one responsible competent partner.

Note

The offerings presented here are the standard program for the German market. As a rule, the international NEFF partners have a different range of motors and gears.

Drive technology

Drive technology Servo technology

Components and transmission of signals

Your type of problem: Demanding handling tasks such as:

Digital AC-servo drives

- Precise positioning
- Highly dynamic cycles
- Placing of elements
- Spraying/coating

Features of the drive concept

- Direct connection to the
- main power supply 230 V 400 V
 Sinusoidal commutation and resolver integrated into motor to provide information
- on position
 Optional high resolution feedback device: sine-cosine encoder or
- sine-cosine encoder or absolute encoderPC Software for parameter-
- Person twale for parameters ization and diagnosis
 Numerous different interface
- Numerous different interface options (position control integrated into converter)
- Built in a production line certified to DIN ISO 9001
- Documented conformity to CE standards

Drive technology Motor models

Technical data

Motor	Dimensions [mm]										
	a [mm]	b [mm]	c [mm]	d [mm]	e [mm]	l [mm]	K without brake	K with brake	q1	p1	
DBL2 H00040	40	2,5	63	9	55	20	122	155	80	65	
DBL3 H00130	60	2,5	90	11	75	23	134	167	80	70	
DBL3 M00190	60	2,5	90	11	75	23	152	185	80	70	
DBL3 N00300	60	2,5	90	14	75	30	188	221	80	70	
DBL4 N00530	95	3	115	19	105	40	185	217	80	81	
DBL4 N00750	95	3	115	19	105	40	230	262	80	81	
DBL5 N01050	130	3,5	165	24	142	50	220	263	80	83	
DBL5 N01700	130	3,5	165	24	142	50	271	314	80	83	
DBL6 N02200	180	3,5	215	24	190	50	243	289	80	-	
DBL7 N03200	180	4	215	32	190	58	263	307	-	91	

Motor	Mo [Nm]	Mn [Nm]	lo [A]	Jmot [kgcm²]	Gmot [kg]	Mbr [Nm]	lbr [A]	Jbr [kgcm ²]	Gbr [kg]
DBL2 H00040	0,4	0,34	0,93	0,08	1,1	1,2	0,35	0,07	0,3
DBL3 H00130	1,3	1,1	1,75	0,8	2,3	2,5	0,6	0,38	0,4
DBL3 M00190	1,9	1,6	1,5	1	2,5	2,5	0,6	0,38	0,4
DBL3 N00300	3	2,6	2,1	1,7	4	2,5	0,6	0,38	0,4
DBL4 N00530	5,3	4,6	3,2	2,8	5,7	5	0,7	1,06	0,8
DBL4 N00750	7,5	6,5	4,1	4,3	7,6	5	0,7	1,06	0,8
DBL5 N01050	10,5	8,5	6,5	8,1	9,8	12	0,8	3,6	1,5
DBL5 N01700	17	14	10,4	11,3	14	12	0,8	3,6	1,5
DBL6 N02200	22	16	15,1	25,1	21,5	20	0,95	9,5	2,8
DBL7 N03200	32	23	20	114,1	32,5	20	0,95	9,5	3,3

Mo = Torque at stop of motor Jmot = Mass moment of inertia Mbr = Braking (stopping) Mn = Nominal torque

motor

lo

of rotor

= Current at stop of Gmot= Weight of motor torque

Jbr = Mass moment of inertia of brake

lbr = Current consumption of Gbr = Weight of brake

brake

Drive technology

Drive technology Motor models

Technical data

Motor			Dimensions [mm]								
	a [mm]	b [mm]	c [mm]	d [mm]	e [mm]	[mm]	k [mm]	q1	p1	
6SM45S	80	3	63	14	90		30	195	175	95	
6SM45M	80	3	90	14	90		30	220	200	95	
6SM45L	80	3	90	14	90		30	270	250	95	
6SM56S	95	3	90	19	105		40	255	229	103	
6SM56M	95	3	100	19	105		40	295	269	103	
6SM56L	95	3	115	19	105		40	335	309	103	
6SM71K	130	3.5	115	24	142		50	316	290	129	
6SM71S	130	3.5	165	24	142		50	366	340	129	
6SM71M	130	3.5	165	24	142		50	416	390	129	
6SM100K	180	4	215	32	190		58	367	341	174	
6SM100S	180	4	215	32	190		58	415	389	174	
6SM100M	180	4	215	32	190		58	463	437	174	
6SM100L	180	4	215	32	190		58	511	485	174	
Motor	и Мо	Mr		, Jm	not i	Gmot	Mbr	l lbr	ı .lbr	Gbr	
	[Nm]	[Nm	n] [A] [kgc	21 m ² 1	[kg]	[Nm]	[A]	[kgcm ²]	[kg]	
6SM45S	0.85	0.7	1.3	3 1.	.5	4.5	6.5	0.7	1.06	0.6	
6SM45M	1.7	1.6	1.5	5 2.	.1	5.5	6.5	0.7	1.06	0.6	
6SM45L	3.2	2.9	2.0	6 3.	.4	6.5	6.5	0.7	1.06	0.6	
6SM56S	3.8	3.6	3.	1 5.	.2	6.1	12.0	0.75	3.6	1.1	
6SM56M	7.0	6.4	. 5.2	2 10	0.0	8.0	12.0	0.75	3.6	1.1	
6SM56L	10.0	8.4	. 7.'	1 15	5.0	10.3	12.0	0.75	3.6	1.1	
6SM71K	10.5	9.5	8.	5 22	2.0	11.7	20.0	1.0	9.5	1.9	
6SM71S											
	16.5	13.4	4 12.	4 36	5.0	15.8	20.0	1.0	9.5	1.9	
6SM71M	16.5 22.0	13.4 16.3	4 12. 3 15.	4 36 8 50	5.0 0.0	15.8 20.0	20.0 20.0	1.0 1.0	9.5 9.5	1.9 1.9	
6SM71M 6SM100K	16.5 22.0 25.0	13.4 16.3 19.9	1 12. 3 15. 9 18.	4 36 8 50 8 74	0.0 1.0	15.8 20.0 26.0	20.0 20.0 60.0	1.0 1.0 2.1	9.5 9.5 57.5	1.9 1.9 5.4	
6SM71M 6SM100K 6SM100S	16.5 22.0 25.0 36.0	13.4 16.3 19.9 24.0	4 12. 3 15. 9 18. 6 26.	4 36 8 50 8 74 7 108	5.0 0.0 1.0 3.0	15.8 20.0 26.0 33.0	20.0 20.0 60.0 60.0	1.0 1.0 2.1 2.1	9.5 9.5 57.5 57.5	1.9 1.9 5.4 5.4	
6SM71M 6SM100K 6SM100S 6SM100M	16.5 22.0 25.0 36.0 46.0	13.4 16.3 19.9 24.0 27.1	4 12. 3 15. 9 18. 5 26. 1 35.	4 36 8 50 8 74 7 108 0 14	5.0 0.0 1.0 8.0 1.0	15.8 20.0 26.0 33.0 40.0	20.0 20.0 60.0 60.0 60.0	1.0 1.0 2.1 2.1 2.1 2.1	9.5 9.5 57.5 57.5 57.5	1.9 1.9 5.4 5.4 5.4	

Drive technology

Servo technology – Attachment to linear drive unit with toothed belt drive

Motor attachment to linear drive unit

Technical data

Size	Motor		Dimensions [mm]								
		A	В	С	D	E	F	G			
WH40	6SM45M	278	190	68	90	90	66	50			
WH50	6SM45L	333	240	68	90	90	66	46			
WH50	6SM56M	361	255	81	115	100	66	46			
WH80	6SM56L	423	295	88	115	100	66	46			
WH80	6SM71M	504	366	98	142	140	70	58			
WH120	6SM71M	536	366	110	142	140	70	58			
WH120	6SM100S	535	357	118	190	200	135	79			

Attachment of gear motor to linear drive unit

Prefered ratios of the listed gears PLE-series: SP-series:

PLE-series:	SP-series
i= 3:1	i= 4:1
5:1	5 : 1
10 : 1	7:1
	10 : 1

\<u>Interfering conto</u>ur motor <u>Interfering contour g</u>ear

Size	Gear	Motor				Dimer	nsions [mm]			
			A	В	С	D	E	F	G	H
WH40	LP050	DBL 2H00040	252	102	67	63	55	55	54	35
WH40	LP050	DBL 3H00130	266	111	72	63	75	75	62	32
WH50	LP050	DBL 2H00040	257	102	67	63	55	55	54	35
WH50	LP050	DBL 3H00130	271	111	72	63	75	75	62	32
WH50	LP070	6SM45M	382	190	90	77	90	80	66	46
WH80	LP090	6SM45L	476	240	102	94	90	90	66	46
WH80	LP090	6SM56M	501	255	112	94	115	90	66	46
WH80	LP120	6SM56L	595	295	130	130	115	130	66	46
WH80	LP155	6SM71S	639	266	159	174	142	120	70	58
WH120	SP140	6SM71K	652	266	145	181	150	142	70	58
WH120	SP140	6SM71M	702	316	145	181	150	142	70	58
WH50 WH80 WH80 WH80 WH80 WH80 WH80 WH80 WH80 WH80 WH80	LP070 LP090 LP120 LP155 SP140 SP140	65M45M 6SM45L 6SM56M 6SM56L 6SM71S 6SM71K 6SM71M	582 476 501 595 639 652 702	190 240 255 295 266 266 316	90 102 112 130 159 145 145	77 94 94 130 174 181 181	90 90 115 115 142 150 150	80 90 90 130 120 142 142	66 66 66 70 70 70 70	46 46 46 58 58 58 58

Drive technology Servo technology – Attachment to WIESEL® with toothed belt drive

Attachment of gear motor to linear drive unit Z-axis

Technical data

Size	Gear	Motor				Dimensio	ns [mm]					
			A	В	C	D	E	F	G	Н		
WHZ50	LP050	DBL3 H00130-00	379	134	69.5	65	75	60	-	32		
WHZ50	LP050	DBL3 H00130-01	412	167	69.5	65	75	60	-	32		
WHZ50	LP070	6SM45M	467	190	90	77	90	80	66	46		
WHZ80	LP090	6SM45L	476	240	102	94	90	120	66	46		
WHZ80	LP090	6SM56M	501	255	112	94	115	120	66	46		
WHZ80	LP120	6SM56L	on request									
WHZ80	LP155	6SM71S	on request									

Drive technology Servo technology – Attachment to WIESEL® with screw drive

Technical data

Size	Motor	Dimensions [mm]												
		А	В	С	D	E								
WM40	DBL3	64	90	60	M5	75								
WM/WV/WZ 60	6SM45	79	100	80	M6	90								
WM/WV/WZ 60	6SM56	89	115	95	M8	100								
WM/WV/WZ 80	6SM56	91	115	95	M8	100								
WM/WV/WZ 80	6SM71	101	165	130	M10	140								
WM/WV120	6SM71	113	165	130	M10	140								
WM/WV120	6SM100	121	215	180	M12	190								
W00	DBL3	55	90	60	M5	75								
W02	6SM45	70	100	80	M6	90								
W02	6SM56	80	115	95	M8	105								

Drive technology

Servo technology – Attachment to WIESEL® with screw drive

Motor attachment to bevel gearbox А -8 Ð Н D

Technical data

Size	Gear	Motor	Dimensions [mm]											
			A	В	С	D	E							
WM40	VLO	DBL3	136	90	60	M5	80							
WM/WV/WZ 60	VL1	6SM45	168	100	80	M6	110							
WM/WV/WZ 60	VL1	6SM56	180	115	95	M8	110							
WM/WV/WZ 60	VL1	6SM71	190	165	130	M10	140							
WM/WV/WZ 80	VL1	6SM56	180	115	95	M8	110							
WM/WV/WZ 80	VL1	6SM71	190	165	130	M10	140							
WM/WV/WZ 80	VL1	6SM100	200	215	180	M12	190							
WM/WV 120	VL2	6SM71	232	165	130	M10	150							
WM/WV 120	VL2	6SM100	240	215	180	M12	190							
W02	KLL	6SM45	80	100	80	M6	90							
W02	KLL	6SM56	80	115	95	M8	105							

øС øВ View in direction H

Drive technology Servo technology – Accessories

Digital servo frequency converter

The appliances from the new series Servostar™ 600 are fully digital servo converters of high performance to head for our brushless synchrone servomotors from the series 6 SM with resolver.

The Servostar™-converters cover a power range of up to approx. 12 kW respective 13.9 kVA.

Detailed information on request.

Your needs	Our solutions
economic installation	 compact dimensions suitable for 300 mm switchgear cabinets
	 exclusive use of plug-in, screw-type connections
reduced wiring	 all filters integrated
requirements	No external filters required for CE
	 all shielding connections directly to the amplifier
simple operation	 2-key operation and 3-character LED-display on the front panel
	 Windows™ user software with an oscilloscope function for current and speed
world-wide usability	 meets all CE standards. UL and ULC pending
	 – can be connected to all international supplies from 230 V to 480 V + 10 %
precise contol and exact positioning	 feedback from: high-resolution sine-cosine encoder high resolution absolute position encoder
	 high performance servo loops (current rate update, 62 µs)
high flexibility	 freely programmable for individual drive tasks

Technical data

		Servostar™ 600											
Norminal Data	DIM	601	603	606	610	614	620	640	670				
		1.5 A	3 A	6 A	10 A	14 A	20 A	40 A	70 A				
Rated supply voltage	V~		3 x 230 V _{-10 %} 480 V _{+10 %} . 5060 Hz										
Rated installed power													
for S1 operation	kVA	1	2	4.2	6.9	10	13.9	30	50				
Rated DC-link													
voltage	V=		310675										
Rated output current													
(effective value 3%)	A _{rms}	1.5	3	6	10	14	20	40	70				
Peak output current													
(for approx. 5 sec, 3%)	A _{rms}	3	6	12	20	28	40	80	140				
Continuous internal													
ballast power (RBint)	W	80	80	200	200	200	200	external	external				
Continuous external													
ballast power (RBext)max	kW	0.5	0.5	1.5	1.5	1.5	2.5	6	6				

Drive technology

Drive technology Frequency Converters

MOVITRAC® 07 Series Frequency Converters

Frequency converters are used to drive rotary-current motors at varying revs. They are also capable of starting and stopping rotary-current motors at predefined acceleration or deceleration rates via adjustable ramp functions. This results in well-defined, reproducible stopping distances, a prerequisite for exact, gentle positioning.

The devices have an integrated radio interference suppressor. This means that the EMC guideline for interference caused by cables is fulfilled with no additional effort.

With vertical axes, a ballast resistor is required to absorb the braking energy. Different braking resistors are available for different versions of converter with different power ratings.

Dimensions of MOVITRAC® 07, sizes OS, OM, OL

Dimensions of MOVITRAC® 07, sizes 1, 2S

Dimensions of MOVITRAC® 07

Туре	A [mm]	B [mm]	C [mm]	b [mm]	d [mm]	Size	Weight [kg]						
MC07A-004	90	185	150	196 (M5)	220	OS	1,5						
MC07A-008	90	185	150	196 (M5)	220	OS	1,5						
MC07A-015	90	295	150	306 (M5)	330	OL	2,5						
MC07A-015\3	90	295	150	306 (M5)	330	OL	2,5						
MC07A-022\3	90	295	150	306 (M5)	330	OL	2,5						
MC07A-030\3	90	295	150	306 (M5)	330	OL	2,5						
MC07A-040\3	90	295	150	306 (M5)	330	OL	2,5						
MC07A-055\3	105	335	205	325 (M5)		25	5						
MC07A-075\3	105	335	205	325 (M5)		25	5						
MC07A-110\3	130	335	196	300 (M5)		2	6,6						

For proper cooling, provide for 100 mm of free space above and below. Free space at the sides is not required; the units can be installed side by side.

Drive technology Frequency Converters

Whether standard U/f control process or VFC field-oriented regulation (sensorless)

- the MOVITRAC® 07 can be used with both. High overload resistance, integrated protection and monitoring functions, and an increased temperature range are also standard. For optimum motor protection, the MOVITRAC® 07 offers an integrated evaluation unit for the motor temperature sensor. In addition, the PI series controller allows independent control of process parameters such as flow volume or pressure.

The UBP11A parameter

module being an external parameter storage unit, allows not only backup of parameter data but also the copying of existing parameter sets to other frequency converters. With only two function buttons, the parameter module is absolutely user-friendly. All operating states are, of course, indicated by LEDs. Even storage has been thought through. The parameter module is simply plugged to the front of the frequency converter.

Selection data, MOVITRAC® 07

Mains voltage 1 AC 200V - 240V +/- 10%, 50/60 Hz +/- 5%

Converter type	Recom. Motor power for 2-4 pole motors	Nominal input current	Nominal output current	Short-time current	Braking resistor	Braking resistor	Integrated mains filter
	[kW]	[A]	[A]	[A]	[Type]	[Ohms/kW]	[Class]
MC07A-004	0,09-0,37	6,1	2,5	3,7	BW072-005	72/0,5	В
MC07A-008	0,55-0,75	9,9	4,2	6,3	BW072-005	72/0,5	В
MC07A-015	1,1-1,5	16,7	7,3	10,9	BW072-005	72/0,5	В

Mains voltage 3 AC 380V - 500V +/- 10%, 50/60 Hz +/- 5%

Converter type	Recom. Motor Nominal inp power for current 2-4 pole motors		Nominal output current	Short-time current	Braking resistor	Braking resistor	Integrated mains filter
	[kW]	[A]	[A]	[A]	[Type]	[Ohms/kW]	[Class]
MC07A-015\3	0,75-1,5	3,6	4	6	BW072-005	72/0,5	А
MC07A-022\3	2,2	5	5,5	8,2	BW268	68/1,2	А
MC07A-030\3	3	6,3	7	10,5	BW268	68/1,2	А
MC07A-040\3	4	8,6	9,5	14,2	BW268	68/1,2	А
MC07A-055\3	5,5	11,3	12,5	18,7	BW247	47/2,0	А
MC07A-075\3	7,5	14,4	16	24	BW347	47/3,0	А
MC07A-110\3	9,2-11,0	21,6	24	36	BW039-50	39/5,0	А

The field-bus gateway makes child's play of communications

between up to 8 MOVITRAC®:

Unit concept:

- External field-bus gateway (field bus → SBus)
- Switch-cabinet unit IP20

Unit versions:

- UFP11A → PROFIBUS
 UFD11A → DeviceNet
 UFI11A → INTERBUS

Drive technology Elastic Couplings

Elastic Couplings GS

Elastic couplings transmit torque, and compensate for any slight offset between shafts, or slight axial displacement or alteration of angle. The elastic preloading when assembled allows backlash-free transmission of movement when torque is low (e.g. in measurement systems). The coupling consists of two half-couplings (KH), each of which can have different drillings and a toothed ring (ZK) within the same dimensions. The GS version corresponds to the former AGS version.

Executions: 2.0 Split, without

- groove
- 2.1 Split one side with key way
- 2.6 Split both sides
- with key way6.0 Straining-ring hub with
- finished holes according to ISO fit H7 for shafts with K6

Material:

Hub: Tensioning	Aluminium
ring:	(Execution 6.0) Steel
Toothed ring:	Plastic material

Product/type		Dim	iensions [mi	m]		Starting torque, of attachment		Weight at max. bore
Execution 2.0/2.1	A ₁	A ₂	B ₂	øС	M ₁	tensioning screw [Nm]	t ₁	
KH-GS 7	14	7	14		M2	0.37	3.5	0.003
KH-GS 14	22.5	11	30		M3	1.34	5	0.019
KH-GS 19/24	39	25	40	≥ N	M6	10.5	12	0.077
KH-GS 24/28	46	30	55	e	M6	10.5	12	0.174
KH-GS 28/38	52.5	35	65	e p	M8	25	15	0.262
Execution 6.0				abl				
KH-GS 14	30	18.5	30	e t	M3	1.34	-	0.049
KH-GS 19/24	39	25	40	Se	M4	2.9	-	0.120
KH-GS 24/28	46	30	55		M5	6	-	0.280
KH-GS 28/38	52.5	52.5 35 65		M6	6	-	0.450	

Available bore diameters

Exe.	Size	ø 4	ø 5	Ø 6	Ø 7	Ø 8	ø 9	ø 10	ø 11	ø 12	ø 14	ø 15	ø 16	ø 18	ø 19	ø 20	ø 22	ø 24	ø 25	ø 28	ø 30	ø 32	ø 35
2.0	GS7	•	•	•	•																		
2.0	GS14		•	•		•	•	•	•	•	•	•											
2.1	GS14					•		•		•	•												
2.1	GS19/24									•	•	•	•	•	•								
2.6	GS24/28														•	•		٠	•				
2.6	GS28/38															•		•	•		•	•	•
6.0	GS14										•												
6.0	GS19/24							•			•	•	•		•								
6.0	GS24/28														•	•	•	٠	•				
6.0	GS28/38																•	•	•	•	•	•	•

Other diameters upon request

Toothed ring ZK-GS

Product/type	Dimensions [mm]						Weight [kg/p.P.]
	B ₂	E	b	S	D	а	
ZK-GS-7	14	8	6	1	-	-	0.006
ZK-GS-14	30	13	10	1.5	10.5	2	0.004
ZK-GS-19	40	16	12	2	18	3	0.007
ZK-GS-24	55	18	14	2	27	3	0.017
ZK-GS-28	65	20	16	2	30	4	0.029

Drive technology Incremental Shaft Encoder

Incremental Shaft Encoder IG

Incremental shaft encoders are used in conjunction with screw drives, toothed belts, etc. to measure distances. **Material:** Housing aluminium, shaft steel Type: GE push-pull, 10-30 V, LD line driver 5 V \pm 10% according to RS 422 standard

Product	No. of pulses/revs.	Voltage [V]	Output stage	Weight [kg per piece]
IG 601	100	5	LD	0.30
IG 601	100	10-30	GE	0.30
IG 601	200	5	LD	0.30
IG 601	200	10-30	GE	0.30
IG 601	500	5	LD	0.30
IG 601	500	10-30	GE	0.30
IG 601	600	5	LD	0.30
IG 601	600	10-30	GE	0.30
IG 601	1000	5	LD	0.30
IG 601	1250	5	LD	0.30
IG 601	1500	5	LD	0.30
IG 601	2000	5	LD	0.30
IG 601	2500	5	LD	0.30

Absolute incremental shaft encoders on request

Connector STE

Counter-connector for shaft encoder

Product	Pole	Protection system	Execution	Line entrance	Application	Weight
STE 001	12	67	jack	straight	Shaft encoder IG 601	0.04

General accessories Inductive proximity switch

EN Inductive proximity switch

Inductive proximity switches are used to shut down the electric drive before the mechanical limit position has been reached.

The braking path depends on the linear speed and time-lag. This path must at least be allowed between the operating point of the proximity switch and the actual mechanical limit position.

Inductive proximity switches are also used to identify reference points or to signal operating points to the control system. Normally-closed versions are used for limit positions and normally-open versions for operating points.

The proximity switches can be infinitely adjusted in the limit switch bracket.

Technical data

Contactless inductive proximity switch with LED display in plastic housing.

Operating distance: 2 mm Type of protection: IP 67 Power supply: 10–30 V DC Max. load current: 200 mA Screened connection cable, length 2 m or 10 m.

Size	Туре	Cable length [m]	Weight [kg]
EN2	0-normally closed	2	0.04
EN2	S-normally open	2	0.04
EN2	0-normally closed	10	0.19
EN2	S-normally open	10	0.19

ENT	Limit	switch
brac	ket	

A support profile for mounting and adjusting inductive proximity switch EN. The hollow provides space to route cables for the cable harness of a proximity switch and can be concealed with cover tape.

Size	Туре
W02	ENT 18.5 x 20
WOO	ENT 13.2 x 13.2
WH40/50/80/120	ENT 14 x 16
WHZ50/80	ENT 14 x 16
WM40/60/80	ENT 14 x 16
WV60/80	ENT 14 x 16
WZ60/80	ENT 14 x 16
MLSM 60 KGT	ENT 14 x 16
MLSH 60 ZRT	ENT 14 x 16

System Connecting Brackets SVW System Attachment Plates SBP

The program allows the solid connection of NEFF linear axis from power bridge to power bridge. All NEFF linear drive units may be linked in different positions relative to one another. The program is suitable for simple and medium applications and offers complete bracket packages (WPs) for individual combinations of connections. They include all parts necessary for installation, such as screws, KAO mounting brackets and groove stones. Material: AlZn4, 5Mg1

The joining elements can only transfer the maximum forces and moments from the specified linear unit. When forces and moments are overlaid in two or three coordinates, it is necessary to reduce the maximum permissible load to 60 % of the maximum value.

3 Axis	xis Standard Portal, 2X 1Y 1Z						
Туре	Size	2XN**	1Y	1Z	Complete KAO System brackets (x-y)		
WP	SVW01	WH40	WH40	WM40	•		
WP	SVW02	WH50	WH50	WHZ50			
WP	SVW02	WH50	WH50	WM40			
WP	SVW03	WH80	WH80	WHZ80			
WP	SVW03	WH80	WH80	WM60			
WP	SVW03	WH120	WH120	WM80			
WP	SVW03	WH120	WH80	WHZ80			
WP	SVW01	WM40	WM40	WM40	•		
WP	SVW04	WM60	WM60	WM40	•		
WP	SVW05	WM120	WM120	WM80			

**) 2XN = 2 X-axis parallel arrangement

3 Axis Standard Portal, 2X 2Y 1Z

Туре	Size	2XN**	2Y	1Z	Complete KAO System brackets (x-y)
WP	SVW06	WH40*	WH40	WM40	•
WP	SVW07	WH50*	WH50	WHZ50	
WP	SVW07	WH50*	WH50	WM40	
WP	SVW08	WH80*	WH80	WHZ80	
WP	SVW08	WH80*	WH80	WM60	
WP	SVW08/SBP02	WH120*	WH80	WM80	
WP	SVW08/SBP02	WH120*	WH80	WHZ80	
WP	SVW06	WM40*	WM40	WM40	•
WP	SVW07	WM60	WM60	WM40	•
WP	SVW07/SBP01	WM80	WM60	WM60	
WP	SVW07	WM80	WM80	WM60	
WP	SVW07	WM120	WM80	WM60	

*) X-axis only in conjunction with long power bridge LKB. **) 2XN = 2 X-axis parallel arrangement

2 Axis Standard Portal, 2X 1Y						
Туре	Size	2XN**	1Y	Complete KAO System brackets (x-y)		
		WH40	WH40	•		
		WH50	WH50	•		
		WH80	WH80			
		WH120	WH80			
		WH120	WH120			
		WM40	WM40	•		
		WM60	WM60	•		
WP	SBP01	WM80	WM60			
		WM80	WM80			
		WM120	WM80			
		WM120	WM120			

**) 2XN = 2 X-axis parallel arrangement

2 Axis Standard Portal, 2X 2Y

Туре	Size	2XN**	2Y	Complete KAO System brackets (x-y)		
		WH40*	WH40	•		
		WH50*	WH50	٠		
		WH80*	WH50	٠		
		WH80*	WH80			
WP	SBP02	WH120*	WH80			
		WM40*	WM40	•		
		WM60	WM60	•		
WP	SBP01	WM80	WM60			
		WM80	WM80			
		WM120	WM80			

*) X-axis only in conjunction with long power bridge LKB. **) 2XN = 2 X-axis parallel arrangement

Connecting Elements

General accessories

Connecting Elements

2 Axis Standard Portal, 1X 1Z						
Туре	Size	1X	1Z			
WP	SVW02	WH50	WM40			
WP	SVW03	WH80	WM60			
WP	SVW03	WH80	WHZ80			
WP	SVW03	WH120	WHZ80			
WP	SVW03	WH120	WM80			
WP	SVW04	WM60	WM40			
WP	SVW05	WM120	WM80			

2 Axis Standard Portal, 2X interlinked, 1Z

2XU*)	1Y	Complete KAO System brackets (x-y)
WM60	WM60	•
WM80	WM80	

*) 2XU = 2 X-axis among one another

2 Axis Standard Portal, 2X side-by-side, 1Z

Туре	Size	2XN*)	1Z
WP	SVW06	WH40	WM40
WP	SVW07	WH50	WHZ50
WP	SVW08	WH80	WM60
WP	SVW08	WH80	WHZ80
WP	SVW07	WM60	WM60
WP	SVW07	WM80	WM60

*) 2XN = 2 X-axis parallel arrangement

System connecting bracket SVW 2

Connecting Elements

System connecting bracket SVW 4

System connecting bracket SVW 5

System connecting bracket SVW 6

System connecting bracket SVW 7

System connecting bracket SVW 8

Connecting Elements

System attachment plate SBP 2

The NEFF CD-ROM Design assistance at a mouse-click

The current NEFF CD-ROM presents the following topics:

WIESEL Manager

This shows how easy it is to select and calculate all NEFF linear units: with the WIESEL *Manager* programme.

- Enter your required parameters, and the programme suggests the optimum NEFF linear unit – including price calculation and drive dimensions.
- Inspect each individual technical parameter of the unit that the programme has selected.
- Profit from time savings of up to 80% for design and calculation.

CAD-Data

Integrate the CAD data of the NEFF products that you have selected directly into your design. Available for the product programmes:

- WIESEL® mechanical linear drive units
- MULI[®] and JUMBO[®] screw jacks

Assembly and maintenance instructions

Any questions about the installation or maintenance of a NEFF product? You will find maintenance instructions with the information you need on the NEFF CD-ROM.

Order the current NEFF CD-ROM free of charge, using the form on Page 128. You will also find this information at www.neffaa.de.

The capabilities and advantages of WIESEL Manager

- 1. Complete project status: Documented design
- 2. Calculation of all design criteria: Safety in calculation
- 3. Drive dimensioning: Complete drive solution

Load Ratings WIESEL®

Dynamic Load Ratings

With the help of dynamic load ratings, it is possible to calculate the approximate lifetime, dependent on load. The figures shown are for the KGT, according to DIN 69051, Part 4, Draft 1989, and for the guide, according to DIN 636.

Туре	C _{KGM} ¹⁾ _{P=4}	C _{KGM} ¹⁾ _{P=5}	C _{KGM} ¹⁾ _{P=10}	C _{KGM} ¹⁾ _{P=20}	C _{KGM} ¹⁾ _{P=40}	C _{KGM} ¹⁾ _{P=50}	C _{FS} ²⁾ _Y	$C_{FS}^{2)}$ z	C _{KB} ³⁾	$L_{FS}^{2)}$ X	L _{FS} ²⁾ _Y
	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[mm]	[mm]
WH40	-	-	-	-	-	-	(2x) 2786	(2x) 3397	-	72	-
WH50	-	-	-	-	-	-	-	(4x) 1270	-	198	39
WH80	-	-	-	-	-	-	-	(4x) 3670	-	220	65
WH120	-	-	-	-	-	-	-	(4x) 16200	-	180	97
WHZ50	_	-	-	-	-	-	-	(4x) 1270	-	198	39
WHZ80	_	-	_	_	-	-	_	(4x) 3670	-	220	65
WM40	-	4400	-	-	-	-	(2x) 2786	(2x) 3397	-	87	-
WM60-370 ZRT	-	-	-	-	-	-	(2x) 12964	(2x) 11934	-	-	35
WM60-370	_	10500	-	11600	-	8400	(2x) 12964	(2x) 11934	-	-	35
WM60	-	10500	-	11600	-	8400	(4x) 11495	(4x) 10581	-	141.7	35
WM60-500	-	10500	-	11600	-	8400	(4x) 11495	(4x) 10581	-	141.7	35
WM80-370 ZRT	-	-	-	-	-	-	(2x) 18723	(2x) 17919	-	-	49.75
WM80 ZRT	-	-	-	-	-	-	(4x) 14356	(4x) 13739	-	153	49.75
WM80-370	-	12300	13200	13000	-	15400	(2x) 18723	(2x) 17919	-	-	49.75
WM80	-	12300	13200	13000	-	15400	(4x) 14356	(4x) 13739	-	154	49.75
WM120	-	21500	33400	29700	14900	-	(4x) 18723	(4x) 17919	-	186	80.75
WV60	-	10500	-	11600	-	8400	-	-	-	-	-
WV80	-	12300	13200	13000	-	15400	-	-	-	-	-
WV120	-	21500	33400	29700	14900	-	-	-	-	-	-
WZ60	-	10500	-	11600	-	8400	(2x) 12964	(2x) 11934	8300	-	35.00
WZ80	-	12300	13200	13000	-	15400	(2x) 18723	(2x) 17919	13700	-	49.75
W00	4300	4400	-	-	-	-	-	-	-	-	-
W02	-	10500	-	11600	-	-	-	-	-	-	-
MLSH60	-	-	-	-	-	-	-	-	-	190	102.5
MLSM60	-	12300	13200	13000	-	15400	(4x) 13770	(4x)13770	_	163	105

¹⁾ Ball nut
 ²⁾ Guide system
 ³⁾ Ball sleeve

Important note:

The permissible force and moment threshold values for the respective linear unit must not be exceeded at any time.

Drive selection for linear drive units with toothed belt drive

Feed force F _x [N]	Acceleration force F _a [N]	Pow [kW]	er fro
$\mathbf{F}_{\mathbf{X}} = \mathbf{M} \cdot \mathbf{g} \cdot \mathbf{\mu}$	$F_a = m \cdot a$ In vertical applications, the mass acceleration a must be added to the acceleration due to gravity g [9.81 m/s ²].		
Definitions			
M_A = Required drive moment [N	lm]	m	= Mass
M_{load} = Moment resulting from the	e various loads [Nm]	а	= Accel
M _{idle} = Idle torque [Nm]		d _o	= Effect
M_{rot} = Rotational acceleration mc	ment [Nm]	P	= Powe
M _{trans} = Translational acceleration r	noment [Nm]	L	= WIESI
F_{x} = Feed force [N]		J _{syn}	= Idle to
F_a = Acceleration force [N]		n _{max}	= Maxin
g = Acceleration due to gravity	/ [m/s²]	μ	= Frictio

m torque and rotational speed

$$\mathsf{P} = \frac{\mathsf{M}_{\mathsf{A}} \cdot \mathsf{n}_{\max} \cdot 2 \cdot \pi}{60 \cdot 1000}$$

M _A = Required drive moment [Nm]
M _{load} = Moment resulting from the various loads [Nm]
M _{idle} = Idle torque [Nm]
M _{rot} = Rotational acceleration moment [Nm]
M _{trans} = Translational acceleration moment [Nm]
F_{X} = Feed force [N]
F _a = Acceleration force [N]
g = Acceleration due to gravity [m/s ²]
V _{max} = Maximum linear speed [m/s]

m	= Mass to be tranported [kg] ¹⁰
а	= Acceleration [m/s ²]
d _o	= Effective diam. of pulley [mm] ²
Ρ	= Power [kW]
L	= WIESEL® length [mm]
J _{syn}	= Idle torque of pulley [kgm ²]
n _{max}	a = Maximum rotational speed [rpm]
μ	= Friction factor

Calculating the drive moment M_A [Nm]

The required drive moment is composed of the "load moment", the "acceleration moment" and the "idle torque".

 M_A Total =

Туре	μ	J _{syn} [kgm ²]	Spec. mass tooth belt [kg/m]	Туре	μ	J _{syn} [kgm²]	Spec. mass tooth belt [kg/m]
WH40	0.05	8.800 E-06	0.032	WHZ50	0.1	6.906E-05	0.055
WH50	0.1	1.928 E-05	0.055	WHZ80	0.1	5.026E-04	0.114
WH80	0.1	2.473 E-04	0.210	WM60 ZRT	0.1	2.127E-05	0.074
WH120	0.1	1.004 E-03	0.340	WM80 ZRT	0.1	1.115E-04	0.158
				MLSH60 ZRT	0.1	4.604E-05	0.114

¹⁾ Total mass m = mass to be moved + mass of power bridge 3^{3} + mass of toothed belt Mass of toothed belt = spec. mass of tooth belt [kg/m] · 2⁴) · <u>WIESEL®-lenght [mm]</u> 1000
 Values for the respective effective diametres, see at corresponding mechanical linear units.
 For Z-axis moved dead mass to be taken into account.
 To replace by 1 at Z-Axis

Drive selections for linear drive units with screw drive

Feed force F _x [N]	Acceleration force F _a [N]	Power from torque and rotational speed [kW]		
$\mathbf{F}_{\mathbf{X}} = \mathbf{M} \cdot \mathbf{g} \cdot \boldsymbol{\mu}$	$F_a = m \cdot a$ In vertical applications, the mass acceleration a must be added to the acceleration due to gravity g [9.81 m/s ²].	$\mathbf{P} = \frac{\mathbf{M}_{A} \cdot \mathbf{n}_{\max} \cdot 2 \cdot \pi}{60 \cdot 1000}$		
Definitions				
M_A = Required drive moment [Nm]	m = Mass to be transported [kg]		
$M_{load} = Moment resulting from the figure of the figur$	ne various loads [Nm]	a = Acceleration [m/s ²]		
M _{idle} = Idle torque [Nm]		p = Screw pitch [mm]		
M_{rot} = Rotational acceleration m	oment [Nm]	P = Power [kW]		
M _{trans} = Translational acceleration	moment [Nm]	L = WIESEL® length [mm]		
F_x = Feed force [N]		n _{max} = Maximum rotational speed [rpm]		
F_a = Acceleration force [N]		μ = Friction factor		
g = Acceleration due to gravi	ty [m/s²]	j_{sp} = Mass moment of inertia of the screw per meter [kgm ² /m]		
Calculating the drive model The required drive moment is co $M_{A} = M_{Hard} + M_{H}$	Dment M _A [Nm] mposed of the "load moment", the " t Mist	acceleration moment" and the "idle torque".		
	rans + Mirot + Midle The with $M_{rot} = \frac{j_{sp} \cdot L \cdot n_{rr}}{V_{max} \cdot 6}$ $M_{trans} = \frac{F_a \cdot p}{2 \cdot \pi \cdot 1000}$	e value for the respective idle torque can be found in the corresponding mechanical linear drive units.		
$M_{load} = \frac{1}{2 \cdot \pi}$	x 2 · 1000			
		M. Total =		

M_A Total =

Friction factor $\boldsymbol{\mu}$

Mass moment of inertia j_{sp}

Туре	Values for μ lubricated		
WIESEL POWERLine® WM40	0.05		
WIESEL POWERLine® WM60/80/120 WIESEL VARIOLine® WZ60/80 WIESEL FORCELine® MLSM60 KGT	0.1		
WIESEL DYNALine®	Friction value of the external guide		
WIESEL® W00/W02	0.3		

Туре	P [mm]	j _{sp} [kgm²/m]
WIESEL <i>POWERLine®</i> WM60 WIESEL <i>DYNALine®</i> WV60 WIESEL <i>VARIOLine®</i> WZ60 WIESEL® W02	5, 20, 50	8.8 · 10 ⁻⁵
WIESEL POWERLine® WM80 WIESEL DYNALine® WV80 WIESEL VARIOLine® WZ80 WIESEL FORCELine® MLSM60 KGT	5, 10, 20, 50	2.25 · 10 ⁻⁴
WIESEL POWERLine® WM120 WIESEL DYNALine® WV120	5 10, 20, 40	6.41 · 10 ⁻⁴ 6.28 · 10 ⁻⁴
WIESEL POWERLine® W00/WM40	5	1.13 · 10 ⁻⁵

Order information WIESEL SPEEDLine®

code:

Example:

code

Drive shaft execution AZ6, side AZ1 prepared for mounting of a shaft encoder, side AZ2 with keyway.

Order information WIESEL POWER Line[®], WIESEL DYNA Line[®], WIESELVARIO ine®

shaft within the order code

Drive shaft execution

AZ6/D/N

shaft:

- 0 = plain
- with keyway N = shaft end prepared for D =
- mounting of a shaft encoder

Definition of the drive shaft within the order code

Drive shaft execution AZ1 Drive shaft execution AZ2

Example:

Drive shaft execution AZ6, side AZ1 prepared for mounting of a shaft encoder, side AZ2 with keyway.

124

Order information WIESEL® W0, Connecting elements

Order information WIESEL FORCELine®

Inquiry data Ask our specialists!

•

Y

•

Date:		Contact:	
Company:		Department:	
Street:		Telephone:	
Postcode/Town:		Fax:	
		e-mail:	
Your requirements			
Travel			
Linear displacement [mm]:		Forces and moments	
Kinematics		Position of power bridge	
Cycle time [s]:		🗋 Top 🔲 Bottom	At side
or Velocity [m/s]:	_ Acceleration [m/s ²]:	Center of gravitiy: Lx [mm]: Lv [mm]:	Lz [mm]:
Duty cycle			
or Number of cycles/h:			
·		Ambient conditions	
Accuracy		Amplent conditions	
Required repeatability [± mm]:		🗆 Dust 🗖 Chips	Humidity [%]:
		Temperature [degrees]:	
a) Ludu		Drive systems	
		AC Servo	
b) Additional load		Three-phase asynchronous model	otor and frenquency converter
[N]:			
		Control system	
c) Installed position		Requirements:	
🗋 Horizontal 📃 Vertic	al		
or angle of installation [degree	es]:		
		Additional information on app	lication
a) Design model (only for WIESEL	SPEEDLINe [®])		
e) External quide			
No Yes			
Friction value of the guide μ :			
Accessories (please mark)			
□ FA Felt wipers	KRG Bevel gearbox	(Specify transmission ratio)	EN Inductive limit switch (specify number and version)
\square KAO Mounting brackets	transmission ratio)	\square ADG Shaft encode	
LKB Long power bridge	GX universal joint shaft	attachment (specify number	
OKB Additional free-sliding	(specify center distance)	of pulses and version)	
power bridge	ע Parallel belt drive system RT Belt drive	MUK Motor adapter flange and coupling	

Worldwide distribution network NEFF – present throughout the world

Head office

Head office NEFF - Antriebstechnik Automation - GmbH Postfach 12 29 D-71108 Waldenbuch Bonholzstraße 17 D-71111 Waldenbuch Tel:: + 49 (0) 71 57-1 24-0 Fax: + 49 (0) 71 57-40 98 e-mail: mail@neffaa.de www.neffaa.de

The following abreviations show you which international service partner offers each product group: ML = Mechanical linear drive units SHG = Worm gear screw jacks GT = Screw drives

Australia

Australia Numericon Pty. Ltd. 115 Bath Road AUS-Kirrawee N.S.W. 2232 Tel.: +61 (0) 2-95 21 84 66 Fax: +61 (0) 2-95 21 48 04 e-mail: info@numericon.com.au (ML, SHC, GT) NL Densing (ML, SHG, GT) INA Bearings Australia Pty. Ltd. 142 Parra Weena Road AUS-Tarren Point N.S.W. 2229 Tel.: +61 (0) 297 10 11 00 Fax: +61 (0) 295 40 32 99 e-mail: info@ina.au.com (GT)

Austria

Austria Siegfried Reckenfelderbäumer Neff sales office Austria Untermühle 1 83556 Griesstätt Tel: +49 (0) 80 38-69 94 38 Fax: +49 (0) 80 38-69 94 39 e-mail: siegfried reckenfelderbaeumer@neffaa.de www.neffaa.de (ML, SHG, GT)

Eichbauer GmbH Antriebstechnik Automation Kristein 2 A-4470 Enns 2 el.: +43 (0) 72 23-83 98 0 Fax: +43 (0) 72 23-83 98 2 e-mail: mail@eichbauer-at.at www.eichbauer-at.at (ML, SHG, GT)

Belaium

CARON Vector S.A. Avenue Eiffellaan 5 B-1500 Wavre Tel: +32 (0) 10-23 13 11 Fax: +32 (0) 10-23 13 36 e-mail: info@caron-vector.be www.caron-vector.be (ML, SHG, GT)

Brasil

INA Brasil Ltda. Av. Independencia, 3500 BR-103-000-Sorocaba-SP CEP 18087-050 Tel.: +55 (0) 15-235-1668 Fax: +55 (0) 15-235-1966 e-mail: dirk.bekel@br.ina.com (GT)

Bulgaria

INA Lageri OOD Kompi., Krasno Selo" Bl. 194. Eing. W. App. 54. PK 97 BG-1618 Sofia Tel: + 359 (0) 2-9 55 91 56 Fax: +359 (0) 2-9 55 92 69 e-mail: Alexander.Popoff@bg.ina.com (GT)

PR China

 PR China

 PC Automation Co. Ltd.

 Beitaipingzhuang Rd. 25

 Huawei Building

 Add. Room 110

 PRC-100088 Beijing

 Tel: +86 (0) 10-62 38 10 61

 Fax: +86 (0) 10-62 38 10 62

 e-mail: sales@pcabj.com

 www.pcabj.com

 (ML, SHG, GT)

Croatia

Bibus Zagreb d.o.o. Anina 91 HR-1000 Zagreb Tel.: +385 (0) 13 81 80 04 Fax: +385 (0) 13 81 80 05

Czech Republic

BIBUS s.r.o. Videnska 125 CZ-63927 Brünn Tel.: +4 20 (0) 5-47 12 53 00 Fax: +4 20 (0) 5-47 12 53 10 e-mail: bibus@bibus.cz www.bibus.cz (ML, SHG, GT

Denmark

 Definitiant

 CFT Tandhjulsfabrik A/S

 Ravnsbjergvej 8

 DK-3670 Veskø/Søsum

 Tel: +45 (0) 47-17 02 60

 Fax: +45 (0) 47-17 01 05

 e-mail: cft@internet.dk

 www.cft.dk

 (GT)
 INA Danmark Aps Meterbuen 32 DK-2740 Skovlunde Tel: +45 (0) 44-84 13 00 Fax: +45 (0) 44-84 22 23 e-mail: john.prejsler@dk.ina.com (GT) HANO Elektroteknik A/S Ove Gjeddes Vej 9b DK-5220 Odense SØ Tel: +45 (0) 70-20 16 70 Fax: +45 (0) 70-20 16 71 e-mail: info@hano.dk (ML)

Finland Finiano SKS Tekniikka Oy P.O. Box 122 SF-01720 Vantaa Tel: ++3 58 (0) 985-26 61 Fax: ++3 58 (0) 985-26 8 20 e-mail: sks-tekniikka@sks.fi www.sks.fi (ML, SHG, GT)

France

Prance Claude Rebmann NEFF sales office France 11. Rue du Souvenir F-67690 Hatten Tel.: +33 (0) 3-88 80 06 46 Fax: +33 (0) 3-88 80 06 97 e-mail: Claude.Rebmann@neffaa.de www.neffaa.de (ML, SHG)

Great Britain

Ureat Britain INA Linear Systems Division of INA Bearing Co. Ltd. Forge Lane, Minworth GB-Sutton Coldfield West Midlands F76 1 AP Tel: +44 (0) 1 21-3 51-38 33 Fax: +44 (0) 1 21-3 13-04 06 e-mail: sales.dept@ina.co.uk www.ina.co.uk (SHG, GT) (SHG, GT) Modular Robotic Systems Ltd. NEFF House Kirkless Industrial Estate Cale Lane GB-Wigan WN2 1HQ Tel.: +44 (0) 19 42-82 00 88 Fax: +44 (0) 19 42-82 04 31 e-mail: sales@modular.u-net.com (ML) WiLD Power Jacks Ltd. Maconochie Road Fraserburgh CB-AB45 8TE, Scotland Tel.: +44 (0) 1 346 513 131 Fax: +44 (0) 1 346 551 97 37 e-mail: RobertD@powerjacks.co.uk (GT, SHG)

Hungary

BIBUS Kft Ujhegyi ut 2. H-1103 Budapest Tel: +36 (0) 1-265 27 33 Fax: +36 (0) 1-254 89 00 e-mail: info@bibus.hu www.bibus.hu (ML, SHC, GT)

India

CNC Ballscrews Bearing Co. Plot no. 130. K.I.A.D.B. Area Baikampady IND Mangalore 575011 Tel:. +91 (0) 22-8 72 30 95 Fax: +91 (0) 22-8 72 26 85 e-mail: trustcnc@satyam.net.in (GT)

Israel

Delta Elkon P.O. Box 8262 IL-South Netaneya 42504 Tel.: +972 (0) 9-865 84 78 Fax: +972 (0) 9-865 84 92 e-mail: oren@intergama1.co.il (ML, SHG, GT)

Italy

Massimo Colombo NEFF sales office Italy Piazza del Rosario 2 I-20144 Milano Tel.: +39 (0) 2 48 02 44 38 Fax: +39 (0) 2 48 11 02 15 e-mail: massimo.colombo@neffaa.de www.neffaa.de (ML, SHC, GT)

Japan

Japan MIWA Co. Ltd. 67. Takatsubo. Seko Moriyama-Ku J-Nagoya 463-0078 Tel: +81 (0) 52-795 60 11 Fax: +81 (0) 52-795 33 66 e-mail: mail@miwa-inc.co.jp (ML, SHG, GT)

Korea

Korea Hansan Linear System Co., Ltd. RN-212. Youngwha B/D. 610–16 Kuro-Dong, Kuro-Ku ROK-Seoul, 152-050 Tel.: +82 (0) 22-6 33 34 32 Fax: +82 (0) 22-6 33 33 10 e-mail: HansanLS@Kornet.net (ML, GT)

Malaysia

Automation Industry Systems (M) SDN BHD 50. (M) SDN BHD 50. Lorong Nagasari II Taman Nagasari MAL-13600 Prai Tel.: +60 (0) 43-0 56 07 Fax: +60 (0) 43-99 73 27 e-mail: autoind@po.jaring.my (ML, SHG, GT)

Netherlands

Vector Aandrijftechniek B.V. Industrieweg 175 NL-3044 AS Rotterdam Tel: +31 (0) 10-4 46 37 00 Fax: +31 (0) 10-4 46 37 00 Fax: +31 (0) 10-4 15 55 52 e-mail: verkoopgroep5@vector-aandrijftechniek.nl www.vector-aandrijftechniek.nl (ML, SHG, GT)

Norway Norway Centa Transmisjoner as P.B. 1551 N-3206 Sandefjord Tel: +47 (0) 33-48 31 00 Fax: +47 (0) 33-48 31 10 e-mail: centa@centa.no www.centa.no (ML, SHG, GT) (ML, SHC, GT) INA Norge AS Nils Hansens vei 2 P.O. Box 6404 Etterstad N-0604 Oslo FaX: +47 (0) 22 64 58 30 FaX: +47 (0) 22 64 54 11 e-mail: ina@ina.no www.ina.no (GT)

Poland

 Poiand

 BIBUS Menos Sp. z o.o.

 ul. Tadensza Wendy 7/9

 PL-81-341 Gdynia

 Tel.: +48 (0) 58-621 23 35

 Fax: +48 (0) 58-661 71 32

 e-mail: bimen@bimen.com.pl

 www.bimen.com.pl

 (ML, SHG, GT)

Portugal

INA Rolamentos Lda. Av. Fontes Pereira de Melo 470 P-4100 Porto Tel. : + 3 51 (0) 22-6 10 42 08 Fax: +3 51 (0) 22-6 10 42 20 e-mail: marketing@pt.ina.com Www.ina.com (GT)

Romania

CN Industrial Group Bd. Garii Obor 8 D, Sector 2 RO-Bucuresti Tel.: +40 (0) 21-252 98 61 Fax: +40 (0) 21-252 98 60 e-mail: office@inacn.ro www.inacn.ro (KGT, TGT)

Singapore

 Singapore

 PBA (S.) PTE. Ltd.

 157 Sin Ming Road

 02-01 Amtech Building

 SGP-575 624 Singapore

 Tel.: +65 (0) 5 52-79 92

 Fax: +65 (0) 5 52-69 92

 e-mail:pbasing@mbox2.singnet.com.sg

 (ML, SHG, GT)

Slowak Republic

SIGWAR KEPUDIIC BIBUS SK s.r.o. Priemyselna 4 SK-94901 Nitra Tel: +421 (0) 37-7 41 25 25/26 Fax: +421 (0) 37-6 51 67 01 e-mail: bibus@bibus.sk www.bibus.sk (ML, SHG, GT)

Senzor s.p. Park Angelinum 19 SQ-04004 Kosice Tel.: +421 (0) 55-6 22 30 13 Fax: +421 (0) 55-6 22 29 02 www.senzor.sk (ML)

Slovenia

Inoteh d.o.o. Vorohova 20 SI-2345 Bistrica ob Dravi Tel.: +3 86 (2) 6 71 90 12 Fax: +3 86 (2) 6 65 20 81 e-mail: inotek@sid.net (ML, SHG, GT)

Spain

TECNOPOWER Poligono Industrial Molí dels Frares Calle No.10 E-08620 Sant Vincenc dels Horts E-08620 Sant Vincenc dels Barcelona Tel: +34 (0) 93-6 56 80 50 Fax: +34 (0) 93-6 56 80 26 e-mail: tp@tecnopower.es www.tecnopower.es (ML)

Sweden

 Sweden

 INA Sverige AB
 Box 41

 Sch 19586 Arlandastad
 Tel.: +46 (0) 85-95-10-900

 Fax: +46 (0) 85-95-10-960
 e-mail: info@ina.se

 www.ina.se
 (GT)

A. Karlson Industriteknik P.O. Box 290 S-12725 Skärholmen Tel: +46 (0) 8-52 20 05 00 Fax: +46 (0) 8-52 20 05 10 e-mail: info@akarlson.se www.akarlson.se (ML, SHG)

South Afrika

 south Afrika

 INA BEARINGS (PTY) Ltd.

 P.O.Box 400 30

 Walmer.

 SA-Port Elizabeth 6065

 Tel: +27 (0) 41-501 28 00

 Fax: +27 (0) 41-581 04 35

 e-mail: inquiries@ina.co.za

 www.ina.co.za

 (GT)

Switzerland

Switzeriand BIBUS AG Hertistraße 1 CH-8304 Wallisellen Tel: +41 (0) 1-8 77 50 11 Fax: +41 (0) 1-8 77 58 51 e-mail: info.bag@bibus.ch www.bag.bibus.ch (ML, SHC, GT)

<u>Taiwan</u>

Active Automatic Int'l Enterprise Co., Ltd. No. 91. Likung Rd. Tai-Ping City. Taichung ROC-Taiwan Tel.: +8 86 (0) 4-3 95 14 22 Fax: +8 86 (0) 4-3 95 07 74 e-mail: activeat@ms23.hinet.net (ML, SHG, GT)

Turkey

E.M.C. DIS TICARET Ltd. STI. Ethem Efendi Cd. 110/10 TR-81080 Erenköy-Istanbul Tel.: +90 (0) 216-4 78 19 46/47 Fax: +90 (0) 216-4 78 19 48 e-mail: mguden@superonline.com (ML, SHG, GT)

INA Rulmanlari TIC, LTD, STI, Aydin Sodak 4. Dagli Apt. D:10. 1. Levent TR-80600 Istanbul Tel.: +90 (0) 212-279 27 41 Fax: +90 (0) 212-281 66 45 e-mail: inaturk@tr.ina.com www.ina.com.tr (GT)

USA/North America

USA/NOTCH America Precision Technology USA P.O.Box 13324 Roanoke USA-Virginia 24033-3326 Tel: +1 540-8 57 98 71 Fax: +1 540-8 57 98 76 e-mail: sales@PT-USA.net www.PT-USA.net (ML, SHG, GT)

Notes

NEFF BUSINESS Service This is how we understand service

Consultation on site

Technical advice from your international NEFF export partner.

CAD and software support

The NEFF CD-ROM with the determination software WIESEL *Manager*, CAD files of all NEFF products and informations to mounting and maintenance. Available for free via post under www.neffaa.de

Determination of drive technology

The most important drive parametrics for all NEFF WIESEL® actuators are available free of charge. Of course, all drive packages are fully laid out and subjected to a trial run.

Motor adapter flange

Reduce your internal expenditure with the motor adapter flange service. Standard or individual customer made motor adapter flanges are available for all NEFF linear drive units and worm gear screw jacks.

Remote-analysis via monitor-data transmission

Send us an e-mail with a digital photo of your damaged NEFF part and we will help with a fast alalysis.

The direct way to NEFF

NEFF exchange

Tel.: +49 (0) 71 57 / 124-0 Fax: +49 (0) 71 57 / 40 98 e-mail: mail@neffaa.de

Technical consultation Tel.: +49 (0) 71 57 / 124-0 Fax: +49 (0) 71 57 / 124-205

Service e-mail: service@neffaa.de

Internet www.neffaa.de

NEFF – the world of motion technology and automation

NEFF Screw drives GT, MICRON Line®, KOKON®

Roled and a second seco

Worm gear screw jacks MULI®, JUMBO®

The MULI® and JUMBO® worm gear screw jacks are ideal units for moving loads from 5 to 500 km Different motion variations, screws produced in house and matching accessories make the range easy to adapt to virtually every application.

Mechanical linear drive units WIESEL®

with pvide SEL® units can also be combined with complete servourive packages. Preassembled, preconfigured, ready to plug in.

BUSINESS SERVICE

Solving problems easier, faster and safer – this is the aim of the NEFF Business Service. With a comprehensive range of services, with full commitment and with excellent comfort for our customers. There is no limit to our support – worldwide.

NEFF Antriebstechnik Automation GmbH

Kh Frida 17 Kh 71 57/1 24-0 7/40 98 www.neffaa.de E-Mail: mail@neffaa.de

dent.